درمان با باکتریوفاژ برای کنترل مشکلات تولید طیور

نوع مقاله : مقاله مروری

نویسندگان

10.22099/ijvr.2025.51640.7678

چکیده

امروزه بسیاری از سیستم‌های تولید طیور به هیچ آنتی‌بیوتیکی نیاز ندارند. به دلیل عدم دسترسی به آنتی‌بیوتیک‌های جدید برای مصارف دامپزشکی، وجود باکتری‌های مقاوم به چند دارو و ممنوعیت رسمی بسیاری از کلاس‌های آنتی‌بیوتیک برای استفاده در دامپزشکی برای حیوانات تولیدی، نیاز به درمان‌های جایگزین مانند ترکیبات حذف رقابتی، واکسن‌ها، نانوداروها و غیره به یک نیاز فوری تبدیل شده است. در این زمینه، باکتریوفاژها به عنوان یک جایگزین آنتی‌بیوتیک در نظر گرفته می‌شوند. باکتریوفاژها ویروس‌هایی هستند که هدف آن‌ها آلوده کردن، تکثیر و لیز کردن انواع مختلفی از باکتری‌ها در انسان، حیوانات، آب، گیاهان و مواد غذایی است. آن‌ها در چندین راسته و ۱۵ خانواده طبقه‌بندی می‌شوند. ترکیبات مختلف باکتریوفاژها توسط سازمان غذا و داروی ایالات متحده برای مدیریت برخی از عفونت‌های باکتریایی تأیید شده است. آن‌ها در سطح جهانی در تولید و فرآوری طیور مورد استفاده قرار گرفته‌اند. بنابراین، بررسی حاضر قصد دارد تمام جنبه‌های باکتریوفاژها را در سلامت و تولید طیور، از جمله مکانیسم‌های فاژها به عنوان درمان، کاربرد آن‌ها در صنعت و محدودیت‌ها/تهدیدهای مرتبط با استفاده از باکتریوفاژها، آشکار کند.

کلیدواژه‌ها

موضوعات


Abbas, RZ; Alsayeqh, AF and Aqib AI (2022). Role of bacteriophages for optimized health and production of poultry. Animals (Basel). 12: 3378.
Abd El-Ghany, WA (2020). Salmonellosis: A food borne zoonotic and public health disease in Egypt. J. Infect. Dev. Ctries. 14: 674-678.
Abd El-Ghany, WA (2023). Chitosan: a promising natural polysaccharide feed additive in poultry production systems. Iran. J. Vet. Res., 24: 301-312.
Abd El-Ghany, WA (2024). Potential effects of Garlic (Allium sativum L.) on the performance, immunity, gut health, anti-oxidant status, blood parameters, and intestinal microbiota of poultry: An updated comprehensive review. Animals. 14: 498.
Abd El-Ghany, WA; Awaad, MH and Nagwa, SR (2015). The efficacy of certain feed additives for the prevention of Campylobacter jejuni infection in broiler chickens. Asian J. Anim. Sci., 9: 427-433.
Ackermann, HW (2011). Bacteriophage taxonomy. Microbiol. Aust., 32: 90-94.
Adhikari, P; Cosby, DE; Cox, NA; Lee, JH and Kim, WK (2017). Effect of dietary bacteriophage supplementation on internal organs, fecal excretion, and ileal immune response in laying hens challenged by Salmonella Enteritidis. Poult. Sci., 96: 3264-3271.
Adriaenssens, EM and Rodney Brister, J (2017). How to name and classify your phage: An informal guide. Viruses. 9: 1-9.
Ahmadi, M; Amir Karimi Torshizi, M; Rahimi, S and Dennehy, JJ (2016). Prophylactic bacteriophage administration more effective than post-infection administration in reducing Salmonella enterica serovar Enteritidis shedding in quail. Front. Microbiol., 7: 1253.
Akhtar, M; Viazis, S and Diez-Gonzalez, F (2014). Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control. 38: 67-74.
Andreasen, CB (2013). Staphylococcosis. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), Diseases of poultry. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 971-977.
Andreatti Filho, RL; Higgins, JP; Higgins, SE; Gaona, G; Wolfenden, AD; Tellez, G and Hargis, BM (2007). Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poult. Sci., 86: 1904-1909.
Atterbury, RJ; Connerton, PL; Dodd, CE; Rees, CE and Connerton, IF (2003). Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl. Environ. Microbiol., 69: 4511-4518.
Atterbury, RJ; Dillon, E; Swift, C; Connerton, PL; Frost, JA; Dodd, CER; Rees, CED and Connerton, IF (2005). Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol., 71: 4885-4887.
Atterbury, RJ; Gigante, AM; Lozano, MSR; Medina, RDM; Robinson, G; Alloush, H; Barrow, PA and Allen, VM (2020). Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage. Virol. J., 17: 98.
Atterbury, RJ; Van Bergen, MAP; Ortiz, F; Lovell, A; Harris, JA; De Boer, A; Wagenaar, JA; Allen, VM and Barrow, PA (2007). Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol., 73: 4543-4549.
Azizian, R; Nasab, SDM and Ahmadi, NA (2013). Bacteriophage as a novel antibacterial agent in industry and medicine. J. Paramed. Sci., 4: 4928.
Bao, H; Zhang, H and Wang, R (2011). Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum. Poult. Sci., 90: 2370-2377.
Bardina, C; Spricigo, DA; Cortés, P and Llagostera, M (2012). Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl. Environ. Microbiol., 78: 6600-6607.
Barrow, P; Lovell, M and Berchieri Jr, A (1998). Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol., 5: 294-298.
Berchieri, A; Lovell, MA and Barrow, PA (1991). The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res. Microbiol., 142: 541-549.
Bigot, B; Lee, WJ; McIntyre, L; Wilson, T; Hudson, JA; Billington, C and Heinemann, JA (2011). Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol., 28: 1448-1452.
Biswas, B; Adhya, S; Washart, P; Paul, B; Trostel, AN; Powell, B; Carlton, R and Merril, CR (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun., 70: 204-210.
Borie, C; Sanchez, ML; Navarro, C; Ramírez, S; Morales, MA; Retamales, J and Robeson, J (2009). Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella Enteritidis infection in chickens. Avian Dis., 53: 250-254.
Bren, L (2007). Bacteria-eating virus approved as food additive. FDA Consum., 41: 20-22.
Brüssow, H (2005). Phage therapy: The Escherichia coli experience. Microbiology. 151: 2133-2140.
Bruttin, A and Brüssow, H (2005). Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phage therapy. Antimicrob. Agents Chemother., 49: 2874-2878.
Capparelli, R; Nocerino, N; Iannaccone, M; Ercolini, D; Parlato, M; Chiara, M and Iannelli, D (2010). Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J. Infect. Dis., 201: 52-61.
Carey-smith, GV; Billington, C; Cornelius, AJ; Hudson, JA and Heinemann, JA (2006). Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol. Lett., 258: 182-186.
Carvalho, CM; Gannon, BW; Halfhide, DE; Santos, SB; Hayes, CM; Roe, JM and Azeredo, J (2010). The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol., 10: 232-242.
Casey, E; Sinderen, DV and Mahony, J (2018). In vitro characteristics of phages to guide ‘real life’ phage therapy suitability. Viruses. 10: 163.
Cazares, A; García-Contreras, R and Pérez-Velázquez, J (2020). Eco-evolutionary effects of bacterial cooperation on phage therapy: An unknown risk? Front. Microbiol., 11: 590294.
Chan, BK; Abedon, ST and Loc-carrillo, C (2013). Phage cocktails and the future of phage therapy. Future Microbiol., 8: 769-783.
Chinivasagam, HN; Estella, W; Maddock, L; Mayer, DG; Weyand, C; Connerton, PL and Connerton, IF (2020). Bacteriophages to control Campylobacter in commercially farmed broiler chickens, in Australia. Front. Microbiol., 11: 632.
Choińska-Pulita, A; Mituła, P; Sliwka, P; Łaba, W and Skaradzińska A (2015). Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol., 45: 212-221.
Cisek, AA; Dąbrowska, I; Gregorczyk, KP and Wyżewski, Z (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr. Microbiol., 74: 277-283.
Clavijo, V; Baquero, D; Hernandez, S; Farfan, JC; Arias, J; Arévalo, A; Donado-Godoy, P and Vives-Flores, M (2019). Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult. Sci., 98: 5054-5063.
Clavijo, V and Flórez, MJV (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci., 97: 1006-1021.
Clokie, MRJ and Kropinski, AMB (2009). Molecular and applied aspects. In: Bacteriophages: methods and protocols. 7th Edn., New York, Humana Press.
Clokie, MRJ; Millard, AD; Letarov, AV and Heaphy, S (2011). Phages in nature. Bacteriophage. 1: 31-45.
Colom, J; Cano-Sarabia, M; Otero, J; Cortés, P; Maspoch, D and Llagostera, M (2015). Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella. Appl. Environ. Microbiol., 81: 4841-4849.
Dąbrowska, K and Abedon, ST (2019). Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev., 83: e00012-19.
Danis-Wlodarczyk, K; Dąbrowska, K and Abedon, ST (2021). Phage therapy: the pharmacology of antibacterial viruses. Curr. Issues Mol. Biol., 40: 81-164.
De Jonge, PA; Nobrega, FL; Brouns, SJJ and Dutilh, BE (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol., 27: 51-63.
Doffkay, Z; Dömötör, D; Kovács, T and Rákhely, G (2015). Bacteriophage therapy against plant, animal and human pathogens. Acta Biol. Szeged., 59: 291-302.
Duc, HM; Son, HM; Honjoh, KI and Miyamoto, T (2018). Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT - Food Sci. Technol., 91: 353-360.
Duckworth, DH (1976). Who discovered bacteriophage? Bacteriol. Rev., 40: 793-802.
El-Gohary, FA; Huff, WE; Huff, GR; Rath, NC; Zhou, ZY and Donoghue, AM (2014). Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult. Sci., 93: 2788-2792.
El-Shibiny, A; Scott, A; Timms, A; Metawea, Y; Connerton, P and Connerton, I (2009). Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J. Food Protect., 72: 733-740.
Endersen, L; O’Mahony, J; Hill, C; Ross, RP; McAuliffe, O and Coffey, A (2014). Phage therapy in the food industry. Annu. Rev. Food Sci. Technol., 5: 327-349.
European Food Safety Authority (EFSA) (2009). Panel on Biological Hazards (BIOHAZ): Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed. EFSA J., 7: 1-92.
European Food Safety Authority; European Centre for Disease Prevention and Control (2017). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food. EFSA J., 17: 5598.
Fauconnier, A (2019). Phage therapy regulation: From night to dawn. Viruses. 11: 352.
Fessler, AT; Kadlec, K; Hassel, M; Hauschild, T; Eidam, C; Ehricht, R; Monecke, S and Schwarz, S (2011). Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl. Environ. Microbiol., 77: 7151-7157.
Fernandes, S; Proença, D; Cantante, C; Silva, FA; Leandro, C; Lourenço, S; Milheiriço, C; de Lencastre, H; Cavaco-Silva, P and Pimentel, M (2012). Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb. Drug Resist., 18: 333-343.
Fiorentin, L; Vieira, ND and Barioni, WJr (2005). Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol., 34: 258-263.
Firlieyanti, AS; Connerton, PL and Connerton, IF (2016). Campylobacters and their bacteriophages from chicken liver: The prospect for phage biocontrol. Int. J. Food Microbiol., 237: 121-127.
Fister, S; Mester, P; Witte, AK; Sommer, J; Schoder, D and Rossmanith, P (2019). Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods. Trends Food Sci. Technol., 90: 170-174.
Fukushima, K; West, G; Klein, J; Levine, A and Fiocchi, C (1993). Opposite modulatory activity of IL-10 and IL-4 on lamina propria mononuclear-CELLS (LPMC) is stimulus-dependent. Gastroenterology. 104: A702.
Gadde, U; Kim, WH; Oh, ST and Lillehoj, HS (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev., 18: 26-45.
Gamal, AM; Rohaim, MA; Helal, AM; Hamoud, MM; Zaki, MM; Ismael, E; Laban, SE; Nasr, SA; Moubark, ST; Aly, MM; Elagrab, HM; Ismail, TF and Zahran OK (2018). Evaluation of the viricidal efficacy of commercially used disinfectants against Newcastle disease virus. Biosci. Res., 15: 3283-3292.
Garcia, KCOD; Corrêa, IMO; Pereira, LQ; Silva, TM; Mioni, MSR; Izidoro, ACM; Bastos, IHV; Gonçalves, GAM; Okamoto, AS and Andreatti Filho, RL (2017). Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poult. Sci., 96: 3392-3398.
García, P; Martínez, B; Obeso, JM and Rodríguez, A (2008). Bacteriophages and their application in food safety. Lett. Appl. Microbiol., 47: 479-485.
Gast, RK (2013). Salmonella infections. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), Diseases of poultry. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 677-736.
Gervasi, T; Horn, N; Wegmann, U; Dugo, G; Narbad, A and Mayer, MJ (2014). Expression and delivery of an endolysin to combat Clostridium perfringens. Appl. Microbiol. Biotechnol., 98: 2495-2505.
Gigante, A and Atterbury, RJ (2019). Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol. J., 16: 155.
Gill, JJ (2016). 118 phage applications in animal agriculture and food safety. J. Anim. Sci., 94: 57-58.
Gómez-Gómez, C; Blanco-Picazo, P; Brown-Jaque, M; Quirós, P; Rodríguez-Rubio, L; Cerdà-Cuellar, M and Muniesa, M (2019). Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Sci. Rep., 9: 13281.
Gonçalves, GAM; Donato, TC; Baptista, AAS; de Oliveira Corrěa, IM; Garcia, KCOD and Filho, RLA (2014). Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. Poult. Sci., 93: 216-220.
Goode, D; Allen, VM and Barrow, PA (2003). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol., 69: 5032-5036.
Górski, A; Międzybrodzki, R; Borysowski, J; Dąbrowska, K; Wierzbicki, P; Ohams, M; Korczak-Kowalska, G; Olszowska-Zaremba, N; Łusiak-Szelachowska, M; Kłak, M; Jończyk, E; Kaniuga, E; Gołaś, A; Purchla, S; Weber-Dąbrowska, B; Letkiewicz, S; Fortuna, W; Szufnarowski, K; Pawełczyk, Z; Rogóż, P and Kłosowska, D (2012). Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res., 83: 41-71.
Gouvêa, DM; Mendonça, RCS; Lopez, MES and Batalha, LS (2016). Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT - Food Sci. Technol., 67: 159-166.
Grant, A; Hashem, F and Parveen, S (2016). Salmonella and campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiol., 53: 104-109.
Hargreaves, KR and Clokie, MR (2014). Clostridium difficile phages: Still difficult? Front. Microbiol., 5: 184.
Heo, S; Kim, MG; Kwon, M; Lee, HS and Kim, GB (2018). Inhibition of Clostridium perfringens using bacteriophages and bacteriocin producing strains. Korean J. Food Sci. Anim. Resour., 38: 88-98. Hietala, V; Horsma-Heikkinen, J; Carron, A; Skurnik, M and Kiljunen, S (2019). The removal of endo- and enterotoxins from bacteriophage preparations. Front. Microbiol., 10: 1674.
Higgins, JP; Higgins, SE; Guenther, KL; Huff, W; Donoghue, AM; Donoghue, DJ and Hargis, BM (2005). Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult. Sci., 84: 1141-1145.
Hong, SS; Jeong, J; Lee, J; Kim, S; Min, W and Myung, H (2013). Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J. Microbiol. Biotechnol., 23: 1478-1483.
Housby, JN and Mann, NH (2009). Phage therapy. Drug Discov. Today. 14: 536-540.
Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2002). Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci., 81: 1486-1491.
Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2003). Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection. Poult. Sci., 82: 1108-1112.
Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2004). Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult. Sci., 83: 1944-1947.
Huff, WE; Huff, GR; Rath, NC and Donoghue, AM (2010). Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. Poult. Sci., 89: 895-900.
Hungaro, HM; Mendonça, RCS; Gouvêa, DM; Vanetti, MCD and Pinto, CLD (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res. Int., 52: 75-81.
Hussain, MA; Liu, H; Wang, Q; Zhong, F; Guo, Q and Balamurugan, S (2017). Use of encapsulated bacteriophages to enhance farm to fork food safety. Crit. Rev. Food Sci. Nutr., 57: 2801-2810.
Jäckel, C; Hammerl, JA and Hertwig, S (2019). Campylobacter phage isolation and characterization: What we have learned so far. Methods Protoc., 2: 18.
Jeon, G and Ahn, J (2020). Assessment of phagemediated inhibition of Salmonella Typhimurium treated with sub lethal concentrations of ceftriaxone and ciprofloxacin. FEMS Microbiol. Lett., 367: 1-6.
Jeon, G and Ahn, J (2021). Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb. Pathog., 150: 104726.
Jiang, L; Jiang, Y; Liu, W; Zheng, R and Li, C (2022). Characterization of the lytic phage flora with a broad host range against multidrug-resistant Escherichia coli and evaluation of its efficacy against E. coli biofilm formation. Front. Vet. Sci., 9: 906973.
Johnson, RP; Gyles, CL; Huff, WE; Ojha, S; Huff, GR; Rath, NC and Donoghue, AM (2008). Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim. Health Res. Rev., 9: 201-215.
Kim, JW; Cho, YW; Im, HJ; Shin, EM; Seo, HS; Bae, GD; Son, BK and Yang, SY (2016). Bacteriophages: The alternatives to antibiotics for animal feeds. In the 2nd International Symposium on Alternatives to Antibiotics (ATA). Challenges and Solutions in Animal Production; OIE Headquarters, Paris, France 12-15 December 2016.
Kim, SC; Kim, JW; Kim, JU and Kim, IH (2013). Effects of dietary supplementation of bacteriophage on growth performance, nutrient digestibility, blood profiles, carcass characteristics and fecal microflora in broilers. Food Sci. Anim. Resour., 40: 75-81.
Kim, J; Kim, JW; Lee, BB; Lee, GI; Lee, JH; Kim, GB and Kil, DY (2014). Effect of dietary supplementation of bacteriophage on growth performance and cecal bacterial populations in broiler chickens raised in different housing systems. Livest. Sci., 170: 137-141.
Kim, J; Kim, JW; Shin, HS; Kim, MC; Lee, JH; Kim, GB and Kil, DY (2015). Effect of dietary supplementation of bacteriophage on performance, egg quality and caecal bacterial populations in laying hens. Br. Poult. Sci., 56: 132-136.
Knezevic, P; Hoyle, NS; Matsuzaki, S and Gorski, A (2021). Advances in phage therapy: Present challenges and future perspectives. Front. Microbiol., 12: 701898.
Krylov, VN; Tolmachova, TO and Akhverdyan, VZ (1993). DNA homology in species of bacteriophages active on Pseudomonas aeruginosa. Arch. Virol., 131: 141-151.
Labrie, SJ; Samson, JE and Moineau, S (2010). Bacteriophage resistance mechanisms. Nat. Rev. Microbiol., 8: 317-327.
Leskinen, K; Tuomala, H; Wicklund, A; Horsma-Heikkinen, J; Kuusela, P; Skurnik, M and Kiljunen, S (2017). Characterization of vB_SauM-fRuSau02, a twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses. 9: 258.
Lim, TH; Kim, MS; Lee, DH; Lee, YN; Park, JK; Youn, HN; Lee, HJ; Yang, SY; Cho, YW; Lee, JB; Park, SY; Choi, IS and Song, CS (2012). Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res. Vet. Sci., 93: 1173-1178.
Lim, TH; Lee, DH; Lee, YN; Park, JK; Youn, HN; Kim, MS; Lee, HJ; Yang, SY; Cho, YW; Lee, JB; Park, SY; Choi, IS and Song, CS (2011). Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Dis., 55: 435-438.
Lin, DM; Koskella, B and Lin, HC (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 8: 162-173.
Loc-Carrillo, C and Abedon, ST (2011). Pros and cons of phage therapy. Bacteriophage. 1: 111-114.
Loc-Carrillo, C; Atterbury, RJ; Connerton, PL; Wassenaar, TM and Carlton, RM (2005). Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol., 71: 6554-6563.
Lu, Z; Breidt, F; Fleming, HP; Altermann, E and Klaenhammer, TR (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. Int. J. Food Microbiol., 84: 225-235.
Łusiak-Szelachowska, M; Zaczek, M; Weber-Dąbrowska, B; Międzybrodzki, R; Kłak, M; Fortuna, W; Letkiewicz, S; Rogóż, P; Szufnarowski, K; Jończyk-Matysiak, E; Owczarek, B and Górski, A (2014). Phage neutralization by sera of patients receiving phage therapy. Viral Immunol., 27: 295-304.
Ly-chatain, MH (2014). The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol., 5: 51.
Majewska, J; Kźmierczak, Z; Lahutta, K; Lecion, D; Szymczak, A; Miernikiewicz, P; Drapała, J; Harhala, M; Marek-Bukowiec, KJ; Jedruchniewicz, N; Owczarek, B; Górski, A and Dąbrowska, K (2019). Induction of phage-specific antibodies by two therapeutic staphylococcal bacteriophages administered per os. Front. Immunol., 10: 2607.
Marco, MB; Suarez, VB; Quiberoni, A and Pujato, SA (2019). Inactivation of dairy bacteriophages by thermal and chemical treatments. Viruses. 11: 480.
Marek, A; Pyzik, E; Stępień-Pyśniak, D; Urban-Chmiel, R and Nowaczek, A (2019). Characterization of bacteriophages and their carriage in Staphylococcus aureus isolated from broilers in Poland. Br. Poult. Sci., 60: 373-380.
Marotta, F; Garofolo, G; Di Donato, G; Aprea, G; Platone, I; Cianciavicchia, S; Alessiani, A and Di Giannatale, E (2015). Population diversity of Campylobacter jejuni in poultry and its dynamic of contamination in chicken meat. BioMed. Res. Int., 2015: 859845.
Miller, RW; Skinner, EJ; Sulakvelidze, A; Mathis, GF and Hofacre, CL (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis., 54: 33-40.
Monk, AB; Rees, CD; Barrow, P; Hagens, S and Harper, DR (2010). Bacteriophage applications: Where are we now? Lett. Appl. Microbiol., 51: 363-369.
Moore, P; Evenson, A; Luckey, TD; McCoy, E; Elvehjem, C and Hart, EB (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J. Biol. Chem., 165: 437-441.
Moye, ZD; Woolston, J and Sulakvelidze, A (2018). Bacteriophage applications for food production and processing. Viruses. 10: 205.
Mund, MD; Khan, UH; Tahir, U; Mustafa, BE and Fayyaz, A (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop., 20: 1433-1446.
Mutti, M and Corsini, L (2019). Robust approaches for the production of active ingredient and drug product for human phage therapy. Front. Microbiol., 10: 2289.
Nabil, NM; Tawakol, MM and Hassan, HM (2018). Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect. Ecol. Epidemiol., 8: 1539056.
Naghizadeh, M; Amir, M; Torshizi, K; Rahimi, S and Dalgaard, TS (2018). Synergistic effect of phage therapy using a cocktail rather than a single phage in the control of severe colibacillosis in quails. Poult. Sci., 98: 653-663.
Naghizadeh, M; Karimi Torshizi, MA; Rahimi, S; Engberg, RM and Sørensen Dalgaard, T (2019). Effect of serum anti-phage activity on colibacillosis control by repeated phage therapy in broilers. Vet. Microbiol., 234: 61-71.
Nariya, H; Miyata, S; Tamai, E; Sekiya, H; Maki, J and Okabe, A (2011). Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Appl. Microbiol. Biotechnol., 90: 1973-1979.
Nilsson, AS (2014). Phage therapy—Constraints and possibilities. Ups. J. Med. Sci., 119: 192-198.
Nolan, LK; Barnes, HJ; Vaillancourt, JP; Abdul-Aziz, T and Logue, CM (2013). Colibacillosis. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), Diseases of poultry. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 751-805.
Noor, M; Runa, N and Husna, A (2020). Evaluation of the effect of dietary supplementation of bacteriophage on production performance and excreta microflora of commercial broiler and layer chickens in Bangladesh. MOJ Proteom. Bioinform., 9: 27-31.
Nowaczek, A; Urban-Chmiel, R; Dec, M; Puchalski, A; Stępień-Pyśniak, D; Marek, A and Pyzik, E (2019). Campylobacter spp. and bacteriophages from broiler chickens: Characterization of antibiotic susceptibility profiles and lytic bacteriophages. MicrobiologyOpen. 8: e00784.
Oliveira, A; Sereno, R and Azeredo, J (2010). In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol., 146: 303-308.
Pan, D and Yu, Z (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 5: 108-119.
Perera, MN; Abuladze, T; Li, M; Woolston, J and Sulakvelidze, A (2015). Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol., 52: 42-48.
Pirnay, JP; Blasdel, BG; Bretaudeau, L; Buckling, A; Chanishvili, N; Clark, JR; Corte-Real, S; Debarbieux, L; Dublanchet, A; De Vos, D; Gabard, J; Garcia, M; Goderdzishvili, M; Górski, A; Hardcastle, J; Huys, I; Kutter, E; Lavigne, R; Merabishvili, M; Olchawa, E; Parikka, KJ; Patey, O; Pouilot, F; Resch, G; Rohde, C; Scheres, J; Skurnik, M; Vaneechoutte, M; Van Parys, L; Verbeken, G; Zizi, M and Van den Eede, G (2015). Quality and safety requirements for sustainable phage therapy products. Pharm. Res., 32: 2173-2179.
Rahaman, MT; Rahman, M; Rahman, MB; Khan, MFR; Hossen, ML; Parvej, MS and Ahmed, S (2014). Poultry Salmonella specific bacteriophage isolation and characterization. Bangladesh J. Vet. Med., 12: 107-114.
Regulski, K; Champion-Arnaud, P and Gabard, J (2021). Bacteriophage manufacturing: From early twentieth-century processes to current GMP. In: Harper, D; Abedon, S; Burrowes, B and McConville, M (Eds.), Bacteriophages: Biology, technology, therapy. Cham, Switzerland, Springer. PP: 699-729.
Richards, PJ; Connerton, PL and Connerton, IF (2019). Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front. Microbiol., 10: 476.
Rubio, LA (2019). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci., 98: 695-706.
Sahin, O; Kassem, II; Shen, Z; Lin, J; Rajashekara, G and Zhang, Q (2015). Campylobacter in poultry: Ecology and potential interventions. Avian Dis., 59: 185-200.
Santos, SB; Fernandes, E; Carvalho, CM; Sillankorva, S; Krylov, VN; Pleteneva, EA; Shaburova, OV; Nicolau, A; Ferreira, EC and Azeredo, J (2010). Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl. Environ. Microbiol., 76: 7338-7342.
Sarrami, Z; Sedghi, M; Mohammadi, I; Kim, WK and Mahdavi, AH (2022). Effects of bacteriophage supplement on the growth performance, microbial population, and PGC-1α and TLR4 gene expressions of broiler chickens. Sci. Rep., 12: 14391.
Schreiber, S; Heinig, T; Thiele, H and Raedler, A (1995). Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology. 108: 1434-1444.
Seal, BS (2013). Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult. Sci., 92: 526-533.
Sellaoui, S; Alloui, N; Mehenaoui, S and Djaaba, S (2012). Evaluation of immune status of the chicken using morphometry and histology of the bursa of fabricius. J. Vet. Adv., 2: 440-443.
Sillankorva, SM; Oliveira, H and Azeredo, J (2012). Bacteriophages and their role in food safety. Int. J. Microbiol., 2012: 863945.
Sklar, IB and Joerger, RD (2001). Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Saf., 21: 15-29.
Smith, HW (1959). The bacteriophages of Clostridium perfringens. J. Gen. Microbiol., 21: 622-630.
Sommer, J; Trautner, C; Witte, AK; Fister, S; Schoder, D; Rossmanith, P and Mester, PJ (2019). Don’t shut the stable door after the phage has bolted-the importance of bacteriophage inactivation in food environments. Viruses. 11: 468.
Stern, A and Sorek, R (2011). The phage-host arms race: shaping the evolution of microbes. Bioessays. 33: 43-51.
Sukumaran, AT; Nannapaneni, R; Kiess, A and Sharma, CS (2015). Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int. J. Food Microbiol., 207: 8-15.
Tagliaferri, TL; Jansen, M and Horz, HP (2019). Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front. Cell. Infect. Microbiol., 9: 22.
Tawakol, MM; Nabil, NM and Samy, A (2019). Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with Escherichia coli and infectious bronchitis in chickens. Infect. Ecol. Epidemiol., 9: 1686822.
Thanki, AM; Brown, N; Millard, AD and Clokie, MRJ (2019). Genomic characterization of jumbo Salmonella phages that effectively target United Kingdom Salmonella serotypes. Front. Microbiol., 10: 1491.
Toro, H; Price, SB; Mckee, AS; Hoerr, FJ; Krehling, J; Perdue, M and Bauermeister, L (2005). Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis., 49: 118-124.
Torres-Acosta, MA; Castaneda-Aponte, HM; Mora-Galvez, LM; Gil-Garzon, MR; Banda-Magaña, MP; Marcellin, E; MayoloDeloisa, K and Licona-Cassani, C (2021). Comparative economic analysis between endogenous and recombinant production of hyaluronic acid. Front. Bioeng. Biotechnol., 9: 680278.
Torres-Barceló, C and Hochberg, ME (2016). Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol., 24: 249-256.
Twort, FW (1915). An investigation on the nature of ultra-microscopic viruses. Lancet. 186: 1241-1243.
van der Wielen, PW; Biesterveld, S; Notermans, S; Hofstra, H; Urlings, BA and van Knapen, F (2000). Role of volatile fatty acids in development of the cecal microfora in broiler chickens during growth. Appl. Environ. Microbiol., 66: 2536-2540.
Van Immerseel, F; De Buck, J; Pasmans, F; Huyghebaert, G; Haesebrouck, F and Ducatelle, R (2004). Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol., 33: 537-549.
Vikram, A; Woolston, J and Sulakvelidze, A (2021). Phage biocontrol applications in food production and processing. Curr. Issues Mol. Biol., 40: 267-302.
Wagenaar, JA; Van Bergen, MAP; Mueller, MA; Wassenaar, TM and Carlton, RM (2005). Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol., 109: 275-283.
Wang, L; Tan, Y; Liao, Y; Li, L; Han, K; Bai, H; Cao, Y; Li, J; Gong, Y; Wang, X and Peng, H (2022). Isolation, characterization and whole genome analysis of an avian pathogenic Escherichia coli phage vB_EcoS_GN06. Vet. Sci., 9: 675.
Wang, J; Yan, L; Lee, JH and Kim, IH (2013). Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. Asian-Australs. J. Anim. Sci., 26: 573-578.
Wernicki, A; Nowaczek, A and Urban-chmiel, R (2017). Bacteriophage therapy to combat bacterial infections in poultry. Virol. J., 14: 1-13.
Wójcik, EA; Wojtasik, A; Górecka, E; Stańczyk, M and Dastych, J (2015). Application of bacteriophage preparation BAFASAL® in broiler chickens experimentally exposed to Salmonella spp. SSRCI Vet. Med. Prod. Feed Add., 16: 241-251.
Woźnica, WM; Bigos, J and Łobocka, MB (2015). Lysis of bacterial cells in the process of bacteriophage release-canonical and newly discovered mechanisms. Adv. Hyg. Experm. Med., 69: 114-126.
Wright, A; Hawkins, CH; Anggård, EE and Harper, DR (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 34: 349-357.
Wysok, B; Pastuszczak-Frak, M; Uradziński, J; Gomółka-Pawlicka, M; Dzisko, J; Dziedziech, M and Marko, A (2015). Occurrence and antibiotic resistance of Campylobacter spp. strains isolated from pigs and humans. Med. Med., 71: 801-806.
Xie, H; Zhuang, X; Kong, J; Ma, G and Zhang, H (2005). Bacteriophage Esc-A is an efficient therapy for Escherichia coli 3-1 caused diarrhea in chickens. J. Gen. Appl. Microbiol., 51: 159-163.
Xu, Y; Yu, X; Gu, Y; Huang, X; Liu, G and Liu, X (2018). Characterization and genomic study of phage vB_EcoS-B2 infecting multidrug-resistant Escherichia coli. Front. Microbiol., 9: 793.
Yadav, S and Jha, R (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol., 10: 1-11.
Yan, T; Liang, L; Yin, P; Zhou, Y; Sharoba, AM; Lu, Q; Dong, X; Liu, K; Connerton, IF and Li, J (2020). Application of a novel phage LPSEYT for biological control of Salmonella in foods. Microorganisms. 8: 400.
Young, KT; Davis, LM and DiRita, VJ (2007). Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Microbiol., 5: 665-679.
Zaczek, M; Łusiak-Szelachowska, M; Jończyk-Matysiak, E; Weber-Dąbrowska, B; Międzybrodzki, R; Owczarek,
B; Kopciuch, A; Fortuna, W; Rogóż, P and Górski, A
(2016). Antibody production in response to Staphylococcal ms-1 phage cocktail in patients undergoing phage therapy. Front. Microbiol., 7: 1681.
Żbikowska, K; Michalczuk, M and Dolka, B (2020). The use of bacteriophages in the poultry industry. Animals (Basel). 10: 872.
Zhao, P; Baek, H and Kim, I (2012). Effects of bacteriophage supplementation on egg performance, egg quality, excreta microfora, and moisture content in laying hens. Asian-Australas. J. Anim. Sci., 25: 1015-1020.
Zimmer, M; Scherer, S and Loessner, MJ (2002b). Genomic analysis of Clostridium perfringens bacteriophagephi3626, which integrates into guaA and possibly affects sporulation. J. Bacteriol., 184: 4359-4368.
Zimmer, M; Vukov, N; Scherer, S and Loessner, MJ (2002a). The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl. Environ. Microbiol., 68: 5311-5317.