

Shiraz University

IJVR

ISSN: 1728-1997 (Print)

ISSN: 2252-0589 (Online)

Vol. 26

No. 3

Ser. No. 92

2025

IRANIAN JOURNAL OF VETERINARY RESEARCH

Review Article

Bacteriophage therapy for controlling poultry production problems

Abd El-Ghany, W. A.^{1*} and Hamoud, M. M.¹

¹Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt

*Correspondence: W. A. Abd El-Ghany, Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt. E-mail: wafaa.soliman@cu.edu.eg

 10.22099/ijvr.2025.51640.7678

(Received 12 Nov 2024; revised version 5 May 2025; accepted 14 Jul 2025)

This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

Abstract

Today, many poultry production systems require no antibiotics ever. Due to the unavailability of novel antibiotics for veterinary use, presence of multidrug resistant bacteria, and official banning of many antibiotic classes for use in veterinary medicine for production animals, the need for alternative therapeutics such as competitive exclusion compounds, vaccines, nano-medicine, etc. has become an urgent need. In this context, bacteriophages are regarded as an antibiotic alternative. Bacteriophages are viruses that target to infect, replicate, and lyse numerus types of bacteria in humans, animals, water, plants, and food. They are classified into several orders and 15 families. Different preparations of bacteriophages have been approved by the United States of Food and Drug Administration for managing some bacterial infections. They have been globally used in the poultry production and processing. Therefore, the present review intends to expose every aspect of bacteriophages in poultry health and production which include the mechanisms of phages as therapeutics, their usage in the industry, and the limitations/threats associated with the usage of bacteriophages.

Key words: Bacteriophages, Chickens, Immunity, Limitations, Performance

Introduction

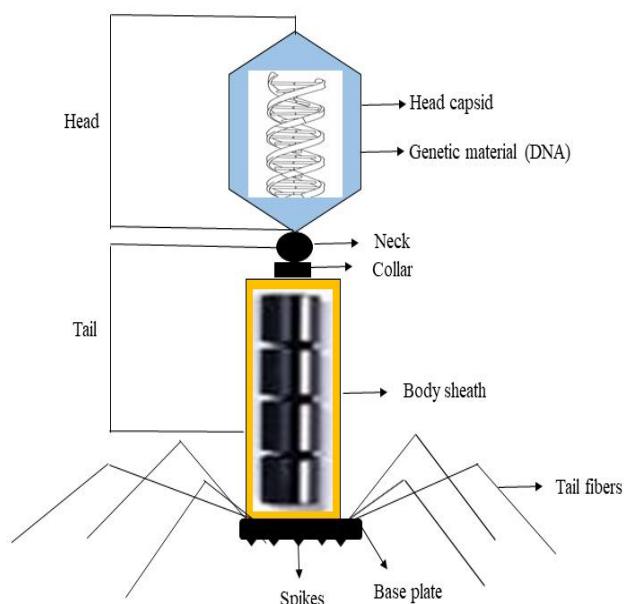
Antimicrobials have been applied since the 1940s for controlling human and animal's bacterial infections. They have also been used as feed additives growth promoters to enhance the production performance parameters and reduce mortalities of animals (Moore *et al.*, 1946). Nevertheless, usage of these types of antibiotics is usually associated with the development of multi-drug resistance bacteria that pose a public health threat (Mund *et al.*, 2017). Therefore, the application of antimicrobial growth promoters has been banned since 2006 and researchers have been encouraged to look for safer alternatives (bio-control agents) (Abd El-Ghany, 2023, 2024). Bacteriophages can be used as a safe, effective, and promising alternative to antibiotics in livestock and poultry production sectors (Gadde *et al.*, 2017; Xu *et al.*, 2018; Gigante and Atterbury, 2019; Thanki *et al.*, 2019; Sarrami *et al.*, 2022). They have been approved and have officially become commercially available for use in some countries. Some commercial bacteriophages showed effectiveness and were approved by the United States Food and Drug Administration (U.S. FDA) for managing of multidrug resistance problems in poultry industry (Doffkay *et al.*, 2015; Wernicki *et al.*, 2017; Moye *et al.*, 2018).

Bacteriophages were discovered in the early 1900s by Twort in 1915. The first detection of phage efficacy showed its ability to increase the survival of chickens against fowl typhoid by 95-100% compared with 0-25% in untreated control chickens (Duckworth, 1976). Bacteriophages are viruses that target, infect, and propagate intracellularly, and then lyse specific prokaryotes (bacteria) or arachea cells (Bren, 2007; Wernicki *et al.*, 2017). They are ubiquitous on earth with estimated numbers 10 times greater than bacterial cells (Gómez-Gómez *et al.*, 2019). Phages are found in water, plants, and food, and therefore are frequently consumed by humans without pathogenicity (Clokie *et al.*, 2011).

Despite bacteriophages are obligate parasites of bacteria, they are not able to replicate independently. They act specifically to infect bacteria and most of them can infect only one or a limited number of bacterial species (Ly-chatain, 2014). Bacteriophages are highly specific towards their hosts with a limited host range (Lu *et al.*, 2003; Carey-smith *et al.*, 2006; Naghizadeh *et al.*, 2018) and have a specificity for the bacterial species. Because of their ability to self-replication, they do not need to be applied repeatedly. Besides, bacteriophages are mostly made up of proteins and nucleic acids, thus they are non-toxic (Loc-Carrillo and Abedon, 2011).

They are almost a hundred times smaller than cells of

bacteria, and only infect a subgroup of bacterial strains within a host species. They are divided into numerous orders and approximately 15 families. Moreover, more than 5,000 phages have 20-200 nm isometric heads and tails and they can be viewed under the transmission electron microscope (Adriaenssens and Rodney Brister, 2017), over 96% of them have tails, and mostly they belong to the order Caudovirales. Tailed phages are divided to Siphoviruses, myoviruses, and podoviruses which were represented by 61%, 25%, and 14%, respectively (Ackermann, 2011). Phages belong to Caudovirales are 1000 times smaller than the bacterium (0.5-20 μm) (Ackermann, 2011).


Bacteriophages are present in the surrounding environment in large numbers and have the ability to eliminate infectious diseases (Brüssow, 2005). They have shown a promising activity against both Gram-positive and Gram-negative bacteria, including the drug resistant strains. Moreover, they have a selective elimination of bacterial pathogens (Fernandes *et al.*, 2012). Phages can effectively lower the bacterial count (Lin *et al.*, 2017) and manage some zoonotic pathogens, which significantly impact public health (Gill, 2016; European Food Safety Authority, 2017; Moye *et al.*, 2018). For example, bacteriophages are used for the treatment of combined infections by *Staphylococcus aureus*, *Escherichia coli*, *Proteus* spp., *Klebsiella* spp., *Pseudomonas* spp., and vancomycin-resistant *Enterococci* in humans (Biswas *et al.*, 2002). Despite, little is known about the healthy chicken gut phageome, bacteriophages have shown effectiveness for treatment of poultry pathogens approved by FDA (Żbikowska *et al.*, 2020) that includes *E. coli*, *Clostridium perfringens* (Miller *et al.*, 2010), *Salmonella* spp. (Carey-smith *et al.*, 2006), *Campylobacter jejuni* (*C. jejuni*) (Richards *et al.*, 2019), and *S. aureus* (Marek *et al.*, 2019). A robust body of evidence showed that phages can be used at several points from farm-to-fork for controlling pathogens (Sillankorva *et al.*, 2012; Hussain *et al.*, 2017). Only the lytic bacteriophages are applied to treat bacterial infections and appropriate for phage therapy. They are able to lyse infected bacteria and mutate resistant ones. However, commensal gut microbiomes are not demolished by bacteriophages. In addition, phages could be naturally implemented in food security during processing or packaging (Endersen *et al.*, 2014; Gouvêa *et al.*, 2016; Vikram *et al.*, 2021). Phage cocktails were used for controlling *C. jejuni* (Chinivasagam *et al.*, 2020) and *Salmonella Enteritidis* (Nabil *et al.*, 2018) infections in broiler chickens from the farm to the processing plant.

In comparison with antibiotics, bacteriophages are significantly more specific to the bacterial serotypes and strains, do not alter the gut microflora, nor increase the risk of dysbiosis, immunosuppression, and secondary infections. However, some difficulties interfere with the bacteriophages applications in commercial production systems (Hietala *et al.*, 2019; Cazares *et al.*, 2020) such as the narrow spectrum activity that can be a problem in a disease control in different infection types (Barrow *et al.*, 1998).

Therefore, the present review was intended to cover the mechanisms of phages as therapeutics, their usage in the industry, and limitations/threats involved with the usage of bacteriophages.

Replication cycle and spectrum of bacteriophages

The tail of the bacteriophage should recognize the matching bacterial antigen for the attachment and binding to the surface receptors of the bacterium. The replication of a bacteriophage occurs through the lytic or lysogenic cycle. The structure of bacteriophage is illustrated in Fig. 1.

Fig. 1: Structure of a bacteriophage

In the lytic cycle, bacteriophages tails fibers attach to the bacterial cells surface receptors, inject their DNA or RNA into the bacterial genome, and stimulate the host's metabolic processes to produce more phage virions which consequently help in the cell lysis and release of the virions for further infections cycles (Clokie and Kropinski, 2009). Bacteriophages use organelles and enzymes of the infected bacterial cells for replication of the injected genetic materials and production of more phages that released after the bacterial lysis (Akhtar *et al.*, 2014). Therefore, lytic bacteriophages are the best for therapeutic treatment of bacterial infections as they directly kill the target bacterial cells (Woźnica *et al.*, 2015; Grant *et al.*, 2016). On the other side, the DNA of bacteriophages is combined to the host bacterial cells and they are replicated together throughout the lysogenic cycle. The DNA sequencing and integrases as well as other genes of the integration process are helpful for the detection of bacteriophages life cycle (Żbikowska *et al.*, 2020).

Bacteriophages get into the hosts circulation within 2-4 h following ingestion, and then they could be

detected in some internal organs such as liver and spleen approximately 10 h after ingestion (Ly-chatain, 2014). However, they could be eliminated rapidly from the internal organs and blood stream by phagocytic cells. In addition, bacteriophages are also cleared by the reticuloendothelial system in the liver and spleen of the host cells (Cisek *et al.*, 2017).

The broad host-range bacteriophages provide a broader lytic scope and they are more preferable than narrow host range types. Thus, the broad type are used as therapeutics against many strains of the target bacteria (De Jonge *et al.*, 2019). Multiple bacteriophages can be collected as a cocktail to increase the bacteriophages coverage of the target species (Chan *et al.*, 2013).

Regulations of bacteriophages production

Bacteriophages have different intervention applications both in humans and animal therapies (Fig. 2); thus, their products require regulatory efficacy and safety roles for application in the market. Bacteriophages production are regulated by FDA, regardless of whether their use in humans or animals or their natural or engineered origin. The bacteriophages are also presently regulated in Europe by the European Commission through the European Medicines Agency. Unlike the US system, the genetically altered phages are regulated differently in the European countries. Moreover, in the United Kingdom, phages are regulated by the Veterinary Medical Directorate for those used in animals, by the Medicines and Healthcare products Regulatory Agency (MHRA) for those used in medicine, and by Food Standards Agency for those used in food. There are parallels of regulatory agencies with other biologicals for effective regulation of bacteriophages production (Fauconnier, 2019).

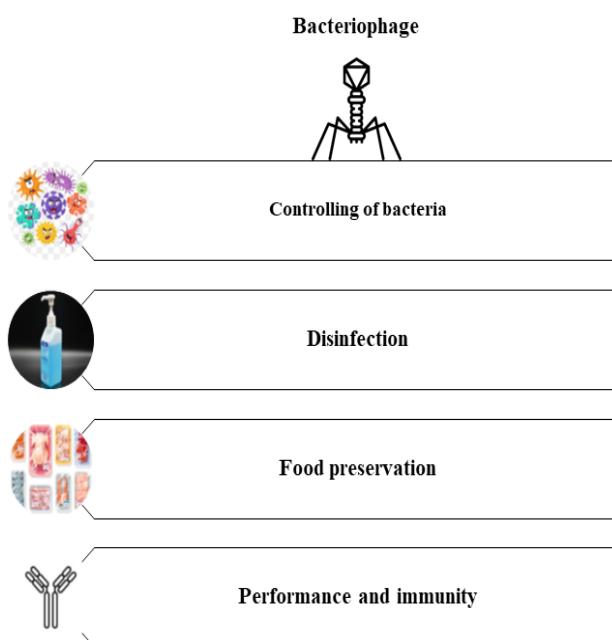
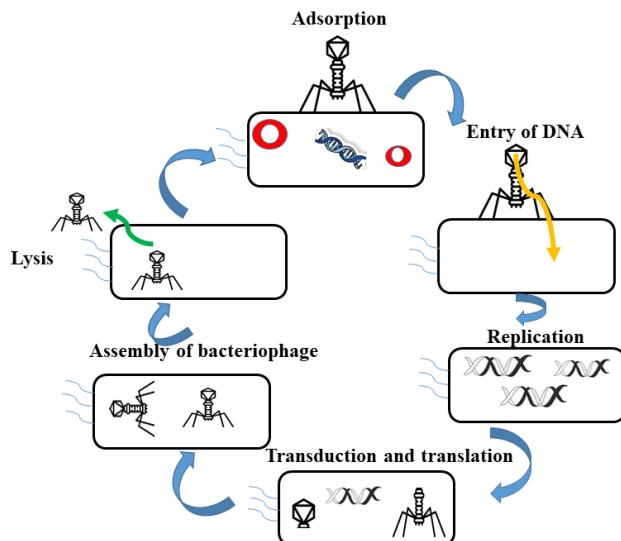


Fig. 2: Different intervention applications of bacteriophages

Factors affecting the efficacy of bacteriophages in poultry industry

Bacteriophages preparation, dose, timing of administration, and the concurrent use with other compounds or vaccines should be taken in consideration before their application in poultry production system. Moreover, the improvement of phages selection, isolation, designing, purification, and adaptation methods are important to obtain their optimal efficacy (Garcia *et al.*, 2008).

The environmental factors such as temperature is critical for the persistence of bacteriophages in/on food. The suitable temperatures for bacteriophages stability vary and they should be tested to determine which are more effective during food storage. It has been reported that refrigeration temperatures can enhance phages persistence on the meat products surfaces (European Food Safety Authority (EFSA), 2009).


The addition of different phages (cocktails) to the same product can broaden the lytic spectrum, delay the bacterial resistance, and consequently increase therapy effectiveness (Wernicki *et al.*, 2017). Lysogenic phages with known nucleotide sequences as well as strong and specific types are preferable. It is important to understand how the phage genes flow into their hosts, to avoid the possible undesirable types and to prevent the horizontal transfer of the undesirable traits or any other genes to bacteria, animals, or humans via the food chain. In addition, phages should be sterile and free from any residual endotoxins that induce allergic conditions.

The interaction between phages and the host immune system is not well understood. Therefore, it is so critical to screen phage's ability to avoid the possibility of antibody neutralization (Naghizadeh *et al.*, 2019). Some phages induce no-phage antibodies in the serum of humans (Bruttin and Brüssow, 2005) or chickens (Abbas *et al.*, 2022). Nevertheless, the later work detected different levels of antibodies after phage therapy (Łusiak-Szelachowska *et al.*, 2014; Zaczek *et al.*, 2016; Majewska *et al.*, 2019). Sometimes, the phage-antibody interactions do not result in the inactivation of bacteriophages. Phage encapsulation process has been developed to improve the safety and efficacy especially when added to the food products or animals feed (Choińska-Pulita *et al.*, 2015). A recent study by Sarrami *et al.* (2022) showed that bacteriophages (1-1.5 g/kg diet) could modulate and boost the immunity and performance of broiler chickens through the up-regulation of gut *interleukin (IL)-10* gene, activation of the downstream signaling pathways, enhancing the up and down-regulation of *PPAR γ* and *PGC-1 α* genes, and consequently improving the epithelial cells metabolism.

Applications of bacteriophages

Controlling of bacterial infections

The scheme of the antibacterial mechanism of bacteriophage is shown in Fig. 3.

Fig. 3: Scheme of the antibacterial mechanism of bacteriophage

Salmonella spp.

The different types of *Salmonella* spp. are very important and significant bacterial pathogens that adversely affect the poultry production with a public health concern (Abd El-Ghany, 2020). In poultry, *Salmonella* spp. are categorized into 2 main groups; host-specific typhoid infections caused by non-motile *S. Pullorum* and *S. Gallinarum* as well as non-host-specific paratyphoid infections caused by motile *S. Enteritidis*, *S. Typhimurium*, *S. Kentucky*, *S. Heidelberg*, *S. Infantis*, *S. Hadar*, *S. Anatum*, *S. Virchow*, etc. Infections with *S. Pullorum* and *S. Gallinarum* induce either acute systemic disease in young birds or asymptomatic infections in adult carriers. Paratyphoid infections may cause persistent colonization of the gut and internal organs, possibly lead to contamination during carcasses processing. However, in highly susceptible stressed young birds, paratyphoid infection is an acute and systemic. For instance, *S. Arizonae* is an acute or chronic disease of turkey poult, but adult birds are carriers without signs (Gast, 2013). In 2017, the European Union reported human cases with *S. Enteritidis* (20.1 cases per 100,000 inhabitants). Most of the reported human's food born outbreaks were caused by consumption of contaminated chickens' meat or eggs and egg products [European Food Safety Authority (EFSA), 2017].

Salmonella-specific bacteriophages have been isolated from excreted sewage, environmental drag swabs, fecal material of chicken's farms, food processing plants, and wild boar reserve (Andreatti Filho *et al.*, 2007; Bao *et al.*, 2011; Rahaman *et al.*, 2014; Thanki *et al.*, 2019). The adjustment of bacteriophages treatment conditions may make it possible to use just one or two bacteriophages rather than many (Atterbury *et al.*, 2007). The bacteriophages cocktails have more lytic effect on *Salmonella* spp. than a phage alone. It has been reported that several oral treatments with bacteriophage cocktails obtained from *S. Enteritidis* and *S. Typhimurium* could promote the lysis of *S. Virchow*, *S. Hadar*, and *S. Infantis*

and induce a significant reduction of *Salmonella* count in the cecum of chickens (Bardina *et al.*, 2012). In addition, Nabil *et al.* (2018) recommended 5 successive bacteriophage treatments doses (one pre- and 4 post-*Salmonella* infection) for complete clearness of the intestinal bacterial load in chicks. A combination of bacteriophages and chemical treatments reduced *Salmonella* counts to below detection levels (Sukumaran *et al.*, 2015).

The different effects of bacteriophages treatments on *Salmonella* spp. are illustrated in Table 1. Over the last decade, many bacteriophages have been produced against *Salmonella* spp. infections (Monk *et al.*, 2010; Moye *et al.*, 2018). It has been found that a commercial product containing bacteriophage was able to reduce mortality and *Salmonella* counts as much as 200 times and improve the feed conversion rate when used as a prophylactic or a post-*Salmonella* infection intervention strategy (Wójcik *et al.*, 2015). Multiple doses of a bacteriophage mixture in the chickens' drinking water were safe and did not affect behavior or the production parameters, and significantly decreased the bacterial load in the droppings of birds at the end of the study (Clavijo *et al.*, 2019). Moreover, Sklar and Joerger (2001) reported that the process of mixing phage with feed and storing feed over 14 days caused a $2 \log_{10}$ PFU/g reduction in phage numbers. The presence of bacteriophages during the *in vivo* studies should be verified by their isolation from cecal contents of treated chickens (Fiorentin *et al.*, 2005).

Bacteriophages were effective in reducing *S. Gallinarum* in layer chickens. The addition of bacteriophages to the feed of infected layer chickens reduced the mortality rate to 5% when compared with 30% in control non-treated chickens (Lim *et al.*, 2011). Moreover, Kim *et al.* (2016) reported that treatment of broilers and breeder chickens with a bacteriophage feed additive product could control both *S. Pullorum* and *S. Gallinarum* infections and reduced the mortality rate in the challenged birds when compared with the non-phage treated control. The brown layer chickens showed improved performance and increased egg production and egg mass (following phage treatment). In the study of Hong *et al.* (2013), the oral administration of bacteriophages 7-days prior-challenge and 21 days post-challenge with *S. Gallinarum* significantly reduced the mortality rate and the bacterial re-isolation from the organs of the treated and contact non-challenged hens. But, the re-isolation rate of *S. Gallinarum* from the contact non-phage treated hens was less than that from the challenged chicken.

Campylobacter spp.

Commercial poultry and their products are natural reservoirs for *Campylobacter* spp. and they represent the major sources of human infections (Young *et al.*, 2007). The prevalence rate of *Campylobacter* spp. in the commercial poultry flocks varied from 2% to 100% (Sahin *et al.*, 2015). In poultry slaughter houses, 100% of small intestine and 91.5% of carcass surfaces swabs were

Table 1: The different effects of bacteriophages treatments on *Salmonella* spp.

Type of bacteria	Dose of bacteriophage	Species of birds	Effects	Reference
<i>S. Typhimurium</i> (10^8 CFU)	10^{12} PFU/ml	Oral therapy of day-old Rhode Island Red chickens	↓ Bacterial viability in the cecum for up to 12 h post-infection ↓ Bacterial count more than one \log_{10} in crop and small intestine at the 3rd day post-treatment ↓ MR to 20% when compared to 56% in non-treated chickens	Berchieri <i>et al.</i> (1991)
<i>S. Enteritidis</i> (10^4 CFU)	Single phage or bacteriophages cocktail (10^7 PFU/g)	Feed treatment of broiler chicks	↓ Cecal bacterial colonization by $1.9 \log_{10}$ CFU/g for the single and $0.6 \log_{10}$ CFU/g for the cocktail	Sklar and Joerger (2001)
<i>S. Enteritidis</i>	10^5 PFU/ml	Chicken carcass	↓ Bacterial number by over 98% and bacteriophages amplified by 3-fold over 48 h	Goode <i>et al.</i> (2003)
<i>S. Enteritidis</i>	3-bacteriophages cocktail (10^{11} PFU/g)	Single oral treatment of broiler chickens	↓ Cecal bacterial colonization by $3.5 \log$ units	Fiorentin <i>et al.</i> (2005)
<i>S. Enteritidis</i> (20 CFU/ml)	10^8 and 10^{10} PFU/ml	Chicken carcass	↓ Bacterial number on contaminated chicken carcasses (1 out of 15 carcasses was positive 24 h post-treatment)	Higgins <i>et al.</i> (2005)
<i>S. Typhimurium</i> (10^5 CFU/ml)	3-bacteriophages cocktail (5.4×10^6 PFU/bird)	Oral treatment for 4, 5, 6, 8, 9, and 10-day-old chickens	↓ Cecal bacterial colonization by 10-fold The phage could be detected in droppings 48 h post-treatment ↑ Weight gain	Toro <i>et al.</i> (2005)
<i>S. Enteritidis</i> or <i>S. Typhimurium</i>	10^{11} PFU/ml	Broiler chickens	↓ Cecal bacterial colonization by 4.2 (<i>S. Enteritidis</i>) and 2.2 (<i>S. Typhimurium</i>) \log_{10} CFU/ml	Atterbury <i>et al.</i> (2007)
<i>S. Enteritidis</i> (2.95×10^5 CFU/ml)	3-bacteriophages cocktail (10^8 PFU/ml/dose)	Two daily doses in 6-days old chicks using an aerosol spray and a probiotic at a day-old of age by coarse spray	↓ Cecal intestinal colonization Complete reduction of deaths	Borie <i>et al.</i> (2009)
<i>S. Enteritidis</i> (5×10^7 CFU)	10^9 PFU/g	Feed treatment of broiler chicks for 21 days	Inhibit intestinal bacterial multiplication	Lim <i>et al.</i> (2012)
<i>S. Enteritidis</i> (10^7 CFU/ml)	Different bacteriophages cocktails (10^9 PFU/ml) 1 h post-challenge	Oral gavage of broiler chickens	↓ Cecal bacterial counts by $2 \log_{10}$ CFU/ml within 12 h and crop <i>Salmonella</i> count below the detectable level	Gonçalves <i>et al.</i> (2014)
<i>S. Enteritidis</i>	10^9 - 10^{10} PFU/ml	Oral treatment of 33-day-old quails for 3 days	Complete bacterial elimination from the cecal tonsils after 6 h of treatment	Ahmadi <i>et al.</i> (2016)
<i>S. Typhimurium</i> and <i>S. Enteritidis</i>	1.18×10^{11} PFU	Oral treatment of broiler chick	↓ bacterial cecal colonization	Nabil <i>et al.</i> (2018)
<i>S. Enteritidis</i> and <i>S. Typhimurium</i> (10^5 CFU)	5-bacteriophage cocktail (10^9 PFU)	Chicken breast muscles	↓ Counts of both strains by $1.6 \log_{10}$ CFU/piece of muscle after storage at 8°C and by 3.1 and $2.2 \log_{10}$ CFU/piece, respectively at 25°C	Duc <i>et al.</i> (2018)
<i>Salmonella</i>	6-bacteriophage cocktail (10^8 PFU/ml)	Drinking water treatment of broiler chickens at ages 18, 26, and 34-days	↓ Cecal bacterial count under the detectable level The mortality, productivity parameters, and the microbiome were the same for both treated and non-treated control	Clavijo <i>et al.</i> (2019)
<i>S. Enteritidis</i> and <i>S.</i>	10^9 PFU/ml	Spraying chicken	↓ <i>S. Enteritidis</i> and <i>S.</i>	Atterbury <i>et al.</i>

Typhimurium (10 ⁶ CFU/ml)	carcasses	Typhimurium contamination levels by 72.2% and 38.9%, respectively	surface <i>al. (2020)</i>
Salmonella	10 ⁶ and 10 ⁷ PFU/ml	Chicken carcasses	The bacterial count reducing effect of bacteriophages was not changed following treatment at 4°C and 25°C <i>Yan et al. (2020)</i>

CFU: Colony forming units, PFU: Plaque forming units, and MR: Mortality rate (↓ reduced and ↑ increased)

Table 2: The different effects of bacteriophages treatments on some bacterial infections

Type of bacteria	Dose of bacteriophage	Species of birds	Effects	Reference
<i>C. jejuni</i> (chickens and humans' origin)	10 ⁷⁻⁹ PFU/ml	Oral treatment of 25-day-old broiler chickens	↓ Gut and cecal colonization (0.5 to 5 log units)	Loc-Carrillo <i>et al. (2005)</i>
<i>C. jejuni</i> (1 × 10 ⁵ CFU)	0.4-2 × 10 ⁹ PFU/ml	Oral treatment of 10-day-old broiler chickens	Inhibit cecal bacterial colonization post-treatment of infected chickens	Wagenaar <i>et al. (2005)</i>
<i>C. jejuni</i> and <i>C. coli</i>	10 ^{7-10⁹} PFU/ml	Oral treatment of broiler chickens for 5 days	↓ <i>C. jejuni</i> and <i>C. coli</i> intestinal count after 48 h of administration	El-Shibiny <i>et al. (2009)</i>
<i>E. coli</i> (10 ³ CFU)	10 ³ PFU /ml 10 ⁴ PFU /ml 10 ⁸ PFU /ml	Water or aerosol spray treatment for a week-old broiler chickens	↓ MR to 25% (10 ³ PFU/ml) and 5% (10 ⁴ PFU/ml) No MR (10 ⁸ PFU/ml)	Huff <i>et al. (2002)</i>
<i>E. coli</i> (10 ⁴ CFU)	2-bacteriophage cocktail (2.6 × 10 ⁸ and 2.35 × 10 ⁹ PFU/ml)	Aerosol treatment of 10 days to 2-week-old broiler chickens	↓ MR (20-27%) ↓ Respiratory signs related infection	Huff <i>et al. (2003)</i>
<i>E. coli</i>	2-bacteriophage cocktail (10 ⁹ PFU/ml)	Intramuscular injection of cocktail and water treatment with enrofloxacin in broiler chickens	↓ MR to 15% in treated chickens compared to 68% in challenged group	Huff <i>et al. (2004)</i>
<i>E. coli</i>	High (1.0 × 10 ⁹ PFU/ml) and low (5.0 × 10 ⁷ PFU/ml) titers	Oral inoculation and spray into the beak of broiler chickens	Protection against the bacterium colonization ↓ MR	Oliveira <i>et al. (2010)</i>
<i>E. coli</i>	8 × 10 ⁸ PFU/ml	Spraying of chicken's litter (200 ml/3.9 m ² surface) of 2-3-week-old broiler chickens	↓ MR and the shedding rate	El-Gohary <i>et al. (2014)</i>
<i>C. perfringens</i>	A bacteriophage cocktail contains different phages (10 ⁵ PFU/ml)	Feed and water treatments of broiler chickens	Improvement of weight gain and feed conversion ratio ↓ MR	Miller <i>et al. (2010)</i>

CFU: Colony forming units, PFU: Plaque forming units, and MR: Mortality rate (↓ reduced and ↑ increased)

positive (Wysok *et al.*, 2015). Moreover, in 2018, the recent report of the European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) (2017) indicated that the prevalence rates of *Campylobacter* spp. were 71.6% in turkeys, 26% in broilers, 37.5% in chicken's meat, and in 28.2% turkey's meat (EFSA and CDC, 2017). These bacteria can colonize the chicken's gut at the 7th day post-hatching and the infected chicks may become carriers without exhibiting a disease picture. Both *Campylobacter jejuni* (86.1% or 64.6%) and *C. coli* (13.9% or 35.4%) are the most prevalent types in poultry. There are many reports indicated the emergence of antibiotic resistance against these bacteria, therefore, searching alternatives is urgently needed (Abd El-Ghany *et al.*, 2015; Marotta *et al.*, 2015; Firleyanti *et al.*, 2016; Nowaczek *et al.*, 2019).

Despite the obvious need for implementing novel

solutions to reduce the infection rates induced by *Campylobacter* spp., there are no available specific commercial phage products either for commercial poultry or for retail chicken products. Compared with most other lytic phages, *Campylobacter* phages cocktails exhibit some characteristics which make their production and application rather difficult. The production of safe cocktails requires optimization methods for isolation, propagation, and purification of phages. Moreover, although there is no genetic differences among *Campylobacter*-phages, there are differences in the host range, lytic activity, or kinetics which induce difficulties in the selection of appropriate phage candidates for application. The problem of post-phage treatment resistance, besides the cost of production have been also demonstrated (Jäckel *et al.*, 2019). The preventive bacteriophages strategy could not prevent *Campylobacter* spp. colonization in some cases

(Carvalho *et al.*, 2010).

However, some research work showed evidences for the efficiency of bacteriophages treatments in reducing the *Campylobacter* colonization in broiler chickens and in consequence diminishing the food chain contamination (Table 2). For instance, Atterbury *et al.* (2005) reported a significant reduction in the number of *C. jejuni* ($10^{5.1}$ CFU/g) when compared with the non-treated chickens (10^7 CFU/g). A similar reduction of *C. jejuni* count on chicken carcasses was obtained (Atterbury *et al.*, 2003). Oral treatment of chickens with a virulent *C. jejuni* bacteriophage cocktail diminished the bacterial count without effect on the gut microbiota, and therefore reduce human exposure during the consumption of poultry products (Richards *et al.*, 2019). Using specific bacteriophages for *C. jejuni* and *C. coli* in the water or feed of broiler chickens induced a significant reduction ($2 \log_{10}$ CFU/g) in the colonization of both bacteria (Carvalho *et al.*, 2010).

The resistance of *Campylobacter* spp. to specific bacteriophages could reach to about 4% (Wagenaar *et al.*, 2005) and 2% (El-Shibiny *et al.*, 2009), therefore, a combination of many specific *Campylobacter* bacteriophages may enhance the bacteriophages efficacy (Johnson *et al.*, 2008).

***Clostridium* spp.**

Clostridium perfringens is a natural component of soil, sewers, and drainage water of poultry processing facilities and chickens gut microbiota. The bacterium is a Gram-positive, anaerobic, non-motile, rod-shaped, and spores former. Despite *C. perfringens* is non-pathogenic in poultry, its pathogenicity is related to toxins especially type A and type C. The infections with a toxicogenic *C. perfringens* strains produce necrotic enteritis with a significant economic loss in poultry industry. In addition, the presence of enterotoxic strains of *C. perfringens* on chicken's meat is associated with a foodborne disease and human's intoxications (Van Immerseel *et al.*, 2004).

Almost all of the produced bacteriophages were unable to infect different strains of *C. perfringens* or with a limited bactericidal activity (Smith, 1959; Seal, 2013). However, certain bacteriophages enzymes such as endolysins and murein hydrolase are regarded as excellence additives for controlling *C. perfringens* infection (Zimmer *et al.*, 2002a, b; Nariya *et al.*, 2011; Gervasi *et al.*, 2014). These enzymes in phages could bind to the peptidoglycans of the Gram-positive bacterial walls and accelerate the destruction lysis of these bacteria. Moreover, Heo *et al.* (2018) evaluated the synergistic effect of combined phages (P4 and A3) and bacteriocin of *Streptococcus hyointestinalis* against *C. perfringens* isolated from chickens and pigs. The results indicated a more significant reduction of bacterial count in a mixed treatment than in a single one. In addition, Miller *et al.* (2010) demonstrated that a bacteriophage treated chickens showed more successful decreasing in mortality than those treated with a formalin-inactivated vaccine containing *C. perfringens*-alpha toxin.

Escherichia coli

E. coli may act as both a primary and secondary pathogen. Avian pathogenic *E. coli* may lead to increasing mortality and condemnation rates in poultry flocks. Moreover, some toxins producing *E. coli* strains are food-borne and cause serious human diseases (Nolan *et al.*, 2013).

A recent *in-vitro* study showed that treatment with phage GN06 induced an inhibition of avian pathogenic *E. coli* growth in the liquid medium and in biofilm (Wang *et al.*, 2022). Phage flora showed a wider lytic spectrum to inhibit the biofilm formation in *E. coli* culture than kanamycin sulphate (Jiang *et al.*, 2022).

Lytic bacteriophages R, originated from human sewage, have crossed the blood-brain barrier and induced a complete reduction of mortalities and meningitis in hens experimentally infected with *E. coli* (Barrow *et al.*, 1998). When bacteriophages were given (1-2 days) prior *E. coli* challenge or during the onset of the disease, they could reach early to the brain of infected chicken, rapidly multiply, and reduce the bacterial count, mortality and the course of infection. Therefore, phages may be used in the prevention and early treatment of *E. coli* infection (Barrow *et al.*, 1998). Similarly, the early intra air-sacs inoculation of bacteriophage (just after challenge) resulted in absence of the clinical signs and significant reduction of mortality from 50% to 20% (Huff *et al.*, 2003). In addition, intramuscular inoculation of bacteriophages significantly decreased the mortality rates from 53% to 17%, 46% to 10%, and 44% to 20% when given immediately, 24 h or 48 h post-challenge, respectively (Huff *et al.*, 2003). However, the authors also concluded that the oral application of bacteriophages in the drinking water was ineffective in reducing the severity of signs or controlling of such infection (Huff *et al.*, 2003). Moreover, Huff *et al.* (2004) reported that the mortality rate related colibacillosis in challenged and bacteriophage treated 7-day-old chicks was reduced to below 10% in comparison with 60% in non-treated challenged chicks. Combining treatment of hens with bacteriophage and enrofloxacin against *E. coli* infection was effective and could reduce the use of antibiotics in treating bacterial diseases (Huff *et al.*, 2004). Nearly similar results were obtained by Xie *et al.* (2005), who demonstrated that oral phage treatment (sewage origin) of 20-day-old chickens induced more reduction of diarrhea and mortality rate produced by enteropathogenic *E. coli* when compared with chickens received a chloramphenicol antibiotic. The authors also mentioned that used phage was safe, non-toxic, highly specific, and did not adversely affect the beneficial microflora. The intra-tracheal inoculation of chickens with bacteriophages prevented the mortality, reduced the severity of single infection with pathogenic *E. coli* or mixed infection with infectious bronchitis virus, and diminished the bacterium count as well as the virus shedding (Tawakol *et al.*, 2019).

Staphylococcus aureus

Staphylococcus spp. including *S. aureus* are normal

inhabitants of skin and mucous membranes of healthy birds and are ubiquitous in the poultry surroundings. Under certain condition, pathogenic strains of *S. aureus* may cause decreased production, mortalities, and carcass condemnation at processing. The clinical pictures of *S. aureus* infections in poultry including arthritis, synovitis, osteomyelitis, chondronecrosis, gangrenous dermatitis, footpad abscesses (bumblefoot), green liver-osteomyelitis complex in turkey, and septicemia (Andreasen, 2013). In humans, some enterotoxin-producing strains of *S. aureus* many contaminate the chicken's carcasses at slaughter causing food poisoning. Moreover, methicillin-resistant *S. aureus* present on carcasses may raise concerns as well (Fessler *et al.*, 2011).

Staphylocophages are categorized into 3 classes: I-Podoviridae, II-Siphoviridae, and III-Myoviridae (Leskinen *et al.*, 2017). Myoviruses and podoviruses are regarded as the most important staphylococcal phages (Leskinen *et al.*, 2017). However, phages induced from *S. aureus* strains with chicken and turkey origins are belonging to the family Siphoviridae of the order Caudovirales. Moreover, they are classified into serogroups A, B, and F (Fa and Fb), and have strong lytic properties against *Staphylococcus* spp. and other bacterial strains. Despite bacteriophages are highly specific to *S. aureus*, some harbored enterotoxigenic genes that make them impractical in phage therapy (Marek *et al.*, 2019).

Listeria monocytogenes

Listeria monocytogenes is a food-born bacterium that can grow under low temperature conditions. The US Department of Agriculture (USDA) and the U.S. Food and Drug Administration (U.S. FDA) approved the use of a bacteriophage product as a food additive for the ready-to-eat meat and poultry products against *Listeria* spp. contamination (Housby and Mann, 2009). That phage product was a mixture of 6 specific lytic bacteriophages that could be applied directly on food without any adverse effects on the organoleptic quality (Perera *et al.*, 2015). Another type of bacteriophage-based product (contains a single phage P100) also showed a strong efficacy against *L. monocytogenes* without any toxic effect. It has been reported that the phages efficacy depends on their initial concentration and the storage temperature (Bigot *et al.*, 2011).

Disinfection

Strict biosecurity measures including disinfection are a key role for the prevention of important threats affecting poultry production and human health. Reducing the prevalence of zoonotic pathogens infections at the farm level can reflect the degree of contamination of poultry facilities and meat products. For example, spaying of litter in poultry farms helps in reducing the horizontal transmission of viral and bacterial infections (Gamal *et al.*, 2018).

Some phages can be used as suitable disinfectants

(Barrow *et al.*, 1998). Bio-sanitizers including bacteriophage-based products may be used in poultry production chains as hatcheries, farms, transport crates, processing plants, and food contact surfaces. They can prevent the formation of bacterial biofilms on the surfaces of the facilities and equipment. Garcia *et al.* (2017) used bacteriophages to control *S. Enteritidis* and *S. Heidelberg* biofilms on surfaces of chicken's slaughterhouses. Moreover, they have been applied directly as wash, mist, or spray surface disinfectants on the live animals prior to slaughter to reduce the contamination with important zoonotic bacterial infections such as *Salmonella* spp. Likewise, *E. coli* O157:H7-based phage product has been developed for the skin decontamination of live animals before slaughtering (Sommer *et al.*, 2019). Disinfectant bacteriophages could be used on artificially contaminated skin of broiler chickens to reduce the number of *C. jejuni* (Atterbury *et al.*, 2003). Also, Hungaro *et al.* (2013) confirmed the efficacy of a biosanitizer that consisted of 5 phages cocktail from chicken feces to reduce *S. Enteritidis* load on the skin of chickens when compared with chemical agents. Moreover, a bacteriophage spray preparation was practical and efficacious for the control of *E. coli* in the litter of broilers farms (El-Gohary *et al.*, 2014).

Food preservation

It is known that decontamination or good food preservation resulting in reducing most of zoonotic pathogens affecting humans. Heat pasteurization, high pressure, acids, and radiation are the most common methods of food preservation. However, some methods are not suitable for the preservation of raw meat because they may affect the quality and appearance of the meat. Thus, using bacteriophages for the preservation of food is considered as a safer and a chemical free method than other chemical preservatives. Phages have been used to decrease the contamination of meat products (García *et al.*, 2008). Phages can provide a natural biocontrol method for the elimination of bacteria particularly those of zoonotic nature. Prevention of *L. monocytogenes* growth in the food was achieved via the addition of 6 lytic bacteriophages without adverse impact on the organoleptic quality of food (Perera *et al.*, 2015). Peracetic acid used in the food industry showed a neutralizing activity against surface bacteriophages (Marco *et al.*, 2019). Therefore, the food products can be preserved using phage preparations approved by FDA in USA and European Union (Vikram *et al.*, 2021).

Improving performance parameters and immunity

An improvement of the performance parameters of broilers and layers was reported following the administration of dietary bacteriophages to reduce some pathogenic enteric bacterial infection (Adhikari *et al.*, 2017; Noor *et al.*, 2020). The dietary supplementation of

broiler chickens with bacteriophages could improve the body weight gain, feed conversion ratio (FCR), and European efficiency factor, modulate the gut microbial composition, boost the immune system, improve the intestinal morphology, and increase the concentration of short chain fatty acids (Sarrami *et al.*, 2022). Similarly, Kim *et al.* (2013 and 2014) found enhanced body weight gain and FCR by increasing the bacteriophages levels in the broilers' diet. However, Wang *et al.* (2013) demonstrated that supplementation of broilers with bacteriophages had no beneficial effects on the body weight or FCR. In layer chicken flocks, the beneficial effect of using bacteriophages was studied by Zhao *et al.* (2012) and the results indicated that the dietary supplementation with 0.035% and 0.05% of bacteriophages significantly improved the egg production parameters. A similar improvement in the layer's performance has been also reported (Kim *et al.*, 2015).

Following oral treatment, bacteriophages colonized the caecum of broiler chickens where the short chain fatty acids are present in high concentrations (Sarrami *et al.*, 2022). Short chain fatty acids showed various important functions in the gut. They reduce the gut pH, inhibit the proliferation of some acid-sensitive pathogens such as Enterobacteriaceae, produce energy, stimulate the intestinal epithelial cells proliferation, increase the villus height and surface area, regulate the blood flow, stimulate enterocytes proliferation, and control mucin production (van der Wielen *et al.*, 2000; Pan and Yu, 2014; Clavijo and Flórez, 2018; Yadav and Jha, 2019).

In comparison with the antimicrobial feed additives, bacteriophages induce fewer negative changes in the normal gut microbiota which are important to inhibit the secondary pathogenic bacterial infections, provide more important metabolic substrates as vitamins, fatty acids, etc., and better enhance the immune system (Azizian *et al.*, 2013; Rubio, 2019). Moreover, bacteriophages can modify the intestinal bacterial populations and gut health, reduce the intestinal inflammation, and improve the differentiation and migration of proliferative cells in the intestinal crypts (Sarrami *et al.*, 2022).

The gene expression of a toll-like receptors (*TLR4*) was more deceased, while the transcription of *IL-10* was more increased in broiler chickens fed on a diet containing 0.5-1 g bacteriophage/kg diet than colistin treated chickens (Sarrami *et al.*, 2022). Bacteriophages naturally act as pathogens killers by reducing the concentration of lipopolysaccharides and consequently the *TLR4* expression in the intestinal cells. Besides, the most important immune-regulatory effect of *IL-10* is the inhibition of the effector functions of the activated phagocytes, T cells, and non-immune cells. Schreiber *et al.* (1995) demonstrated that *IL-10* down-regulated the transcription and secretion of some pro-inflammatory cytokines such as *IL-1 β* , *IL-6*, and *IL-8*. Thus, it considered as a key factor in maintaining normal non-inflammatory intestinal immune-regulation (Fukushima *et al.*, 1993).

Bacteriophages are also able to stimulate the

production of specific humoral antibody responses which may influence the phage therapy in humans, animals, and poultry (Huff *et al.*, 2010). Bacteriophages can activate the innate immune system by the production of specific neutralizing antibodies (Górski *et al.*, 2012) and non-neutralizing immunoglobulins (IgM and IgG) (Capparelli *et al.*, 2010; Nilsson, 2014). It has been demonstrated that increasing the level of oral bacteriophages therapy resulting in an increase in the serum concentrations of IgG and IgM, and consequently an increase in the birds' immune response. It may be suggested that antibodies produced against bacteriophages can help in the stimulation and response of the immune system to the other similar virus structures. Generally, bacteriophages can boost the immune system either directly through entering the circulatory system and stimulating the humoral and cellular immunity, or indirectly via their modulatory effects of the gut microflora (Sarrami *et al.*, 2022). The increase in the relative weight of thymus glands and bursa of Fabricius in response to dietary inclusion of bacteriophages is an indicator for the enhancement of bird's immune response (Sellaoui *et al.*, 2012; Sarrami *et al.*, 2022).

Limitations of bacteriophages application

Selection and production

The selection of potential bacteriophages is an important initial step as they should be virulent and able to propagate through the lysogenic or lytic cycle. The sequencing process is important to ensure that bacteriophages will not integrate on the host genome and hence prevent the transduction and horizontal gene transfer (Santos *et al.*, 2010). From the economic point of view to meet the poultry markets, the production of large quantities of bacteriophages is a great challenge. Therefore, the most cost-effective method was to use one bioreactor (156 L) for 6 phages, followed by filtration processes using 0.45 μ m and 0.22 μ m filters to remove biomass and ensure sterility, respectively. Strict regulations during phages preparation, manufacturing, and production should be complied to ensure high safety and standards suitable for their applications. Moreover, the production titer should be optimized and improved to diminish the production costs (Torres-Acosta *et al.*, 2021).

Although there are no specific guidelines that could be followed for the production of bacteriophages (Knezevic *et al.*, 2021), Regulski *et al.* (2021) developed quality and safety criteria for the bacteriophage therapy product. For example, phages encode lysogeny, virulence genes, or antibiotic-resistant bacteria should not be used to prevent the spread of these factors. In addition, some fastidious bacterium such as *C. difficile* is difficult to be treated with bacteriophages; thus, there are no available phage product (Hargreaves and Clokie, 2014; Mutti and Corsini, 2019). Sometimes, lysing bacteria release endotoxins proteins that cause fever and toxic shock of the host (Krylov *et al.*, 1993). Consequently, the phages

should be free from any impurities such as endotoxins and the threshold levels should be established (Pirnay *et al.*, 2015). Also, a full characterization or screening of bacteriophages is crucial to exclude the foreign proteins or toxic substances which may potentially provoke the immune responses, reduce the effectiveness of therapy, or cause death with anaphylactic shock (Wright *et al.*, 2009).

Delivery to the intestine

It is important to detect the optimal timing and delivery of bacteriophages in the poultry industry setting (Lim *et al.*, 2012). Significant numbers or doses of bacteriophages are essential to adsorb individual host cells (Zimmer *et al.*, 2002a). The colonization of chicken caecum by *S. enterica* serotypes Enteritidis and Typhimurium was inhibited for only 24 to 48 h following bacteriophage treatment. Certain cases showed that the efficacy of bacteriophages therapy should be exploited by the use of a high titer of bacteriophages such as 10^6 PFU (Barrow *et al.*, 1998). Huff *et al.* (2002) found that lower doses of bacteriophages, e.g., 10^2 PFU, induced no statistically significant protection against *E. coli* infection.

The pharmacodynamics and pharmacokinetics of bacteriophages therapy are complex processes (Dąbrowska and Abedon, 2019; Danis-Włodarczyk *et al.*, 2021). The intestinal bacterial cells colonize the gut, therefore, bacteriophages should be delivered into the gastrointestinal tract following their oral administration. However, the most important challenges for oral delivery of bacteriophages are the acidic gastric pH and temperature. Bacteriophages are stable between pH 4-10 (Casey *et al.*, 2018) as they should remain viable and withstand the wide pH variations. Thus, a liposome-encapsulated bacteriophage preparation has been found to be more stable in pH 2.8 and 4°C for at least 3 months when compared with free bacteriophages (Colom *et al.*, 2015). Outside the host, bacteriophages preparations could be directly applied on carcasses (meat, skin), packaging materials, and processing facilities (Żbikowska *et al.*, 2020).

Resistance

There is a possibility for the development of resistance against therapeutic bacteriophages. The mechanisms by which the bacteriophages resistance has been emerged may include alteration of their receptors, blockage of DNA injection, or inhibition of replication. This resistance may lead to a fitness cost for the bacterial cells (Stern and Sorek, 2011). Andreatti Filho *et al.* (2007), found that *S. Enteritidis* colonization was prevented for 48 h after oral treatment with a bacteriophages cocktail which may partly due to the development of acquired resistance to the bacteriophage by the bacteria. However, resistance mutants can be overcome or avoided through the application of bacteriophages cocktails or rotation schedules. In the study of Clavijo *et al.* (2019), the results showed unexpected reduction in *Salmonella* count in broiler

chicken flock houses following effective disinfection practices and bacteriophages cocktail rotation program. Moreover, high titers of bacteriophages may reduce the build-up or accumulation of bacteriophage-resistant bacteria particularly after using as post-slaughter disinfectants preparations (Fister *et al.*, 2019). Besides, a ratio of bacteriophages to bacterial cells can also help in the limitation of resistance (Labrie *et al.*, 2010).

Possibilities of a bacteriophages-antibiotics combination therapy

Some studies have indicated successful combination therapies with bacteriophages and medicine for some human diseases (Torres-Barceló and Hochberg, 2016). Mixed antibiotics and bacteriophages preparations showed synergistic effects in terms of enhanced bacterial suppression and lower bacterial resistance (Tagliaferri *et al.*, 2019). The timing and order of bacteriophages with antibiotics should be taken into consideration as it can impact the synergistic activity. *In-vitro* study of Jeon and Ahn (2020), demonstrated that treatment of *S. Typhimurium* infection with a bacteriophage before ceftriaxone and ciprofloxacin addition was more effective in comparison with treatment with bacteriophages 6 h post-antibiotics treatment. Moreover, the existence of antibiotics did not adversely affect the bacteriophages binding activity to *Salmonella* with a significant enhancing of bacteriophages lytic activity (Jeon and Ahn, 2021). This combined approach can lead to re-establishment of antibiotic sensitivity, particularly in cases where bacteriophages combined to bacterial drug efflux pumps (Tagliaferri *et al.*, 2019). The *in-vivo* bacteriophages-antibiotic synergy studies are limited in poultry research work. Therefore, further studies are essential to understand the underlying dynamics of this synergy and to help develop useful combinational therapies. This bacteriophage-antibiotic combination is a promising development that needs further research.

Conclusion

Bacteriophage production, delivery and usage, as an effective treatment in commercial production settings, in a cost effective way has yet to be investigated so that scale up of bacteriophage(s) usage as a viable practical alternative to antimicrobials in animal commercial production is proven as a practical solution for different infections.

Acknowledgement

This review article has not received any financial support.

Conflict of interest

The authors declare that no conflict of interest could

be perceived as prejudicing the impartiality of the article reported.

References

Abbas, RZ; Alsayeqh, AF and Aqib AI (2022). Role of bacteriophages for optimized health and production of poultry. *Animals* (Basel). 12: 3378.

Abd El-Ghany, WA (2020). Salmonellosis: A food borne zoonotic and public health disease in Egypt. *J. Infect. Dev. Ctries.* 14: 674-678.

Abd El-Ghany, WA (2023). Chitosan: a promising natural polysaccharide feed additive in poultry production systems. *Iran. J. Vet. Res.*, 24: 301-312.

Abd El-Ghany, WA (2024). Potential effects of Garlic (*Allium sativum* L.) on the performance, immunity, gut health, antioxidant status, blood parameters, and intestinal microbiota of poultry: An updated comprehensive review. *Animals*. 14: 498.

Abd El-Ghany, WA; Awaad, MH and Nagwa, SR (2015). The efficacy of certain feed additives for the prevention of *Campylobacter jejuni* infection in broiler chickens. *Asian J. Anim. Sci.*, 9: 427-433.

Ackermann, HW (2011). Bacteriophage taxonomy. *Microbiol. Aust.*, 32: 90-94.

Adhikari, P; Cosby, DE; Cox, NA; Lee, JH and Kim, WK (2017). Effect of dietary bacteriophage supplementation on internal organs, fecal excretion, and ileal immune response in laying hens challenged by *Salmonella Enteritidis*. *Poult. Sci.*, 96: 3264-3271.

Adriaenssens, EM and Rodney Brister, J (2017). How to name and classify your phage: An informal guide. *Viruses*. 9: 1-9.

Ahmadi, M; Amir Karimi Torshizi, M; Rahimi, S and Dennehy, JJ (2016). Prophylactic bacteriophage administration more effective than post-infection administration in reducing *Salmonella enterica* serovar Enteritidis shedding in quail. *Front. Microbiol.*, 7: 1253.

Akhtar, M; Viazis, S and Diez-Gonzalez, F (2014). Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against *Salmonella enterica* serovars. *Food Control*. 38: 67-74.

Andreasen, CB (2013). Staphylococcosis. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), *Diseases of poultry*. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 971-977.

Andreatti Filho, RL; Higgins, JP; Higgins, SE; Gaona, G; Wolfenden, AD; Tellez, G and Hargis, BM (2007). Ability of bacteriophages isolated from different sources to reduce *Salmonella enterica* serovar Enteritidis *in vitro* and *in vivo*. *Poult. Sci.*, 86: 1904-1909.

Atterbury, RJ; Connerton, PL; Dodd, CE; Rees, CE and Connerton, IF (2003). Isolation and characterization of *Campylobacter* bacteriophages from retail poultry. *Appl. Environ. Microbiol.*, 69: 4511-4518.

Atterbury, RJ; Dillon, E; Swift, C; Connerton, PL; Frost, JA; Dodd, CER; Rees, CED and Connerton, IF (2005). Correlation of *Campylobacter* bacteriophage with reduced presence of hosts in broiler chicken ceca. *Appl. Environ. Microbiol.*, 71: 4885-4887.

Atterbury, RJ; Gigante, AM; Lozano, MSR; Medina, RDM; Robinson, G; Alloush, H; Barrow, PA and Allen, VM (2020). Reduction of *Salmonella* contamination on the surface of chicken skin using bacteriophage. *Virol. J.*, 17: 98.

Atterbury, RJ; Van Bergen, MAP; Ortiz, F; Lovell, A; Harris, JA; De Boer, A; Wagenaar, JA; Allen, VM and Barrow, PA (2007). Bacteriophage therapy to reduce *Salmonella* colonization of broiler chickens. *Appl. Environ. Microbiol.*, 73: 4543-4549.

Azizian, R; Nasab, SDM and Ahmadi, NA (2013). Bacteriophage as a novel antibacterial agent in industry and medicine. *J. Paramed. Sci.*, 4: 4928.

Bao, H; Zhang, H and Wang, R (2011). Isolation and characterization of bacteriophages of *Salmonella enterica* serovar Pullorum. *Poult. Sci.*, 90: 2370-2377.

Bardina, C; Spricigo, DA; Cortés, P and Llagostera, M (2012). Significance of the bacteriophage treatment schedule in reducing *Salmonella* colonization of poultry. *Appl. Environ. Microbiol.*, 78: 6600-6607.

Barrow, P; Lovell, M and Berchieri Jr, A (1998). Use of lytic bacteriophage for control of experimental *Escherichia coli* septicemia and meningitis in chickens and calves. *Clin. Diagn. Lab. Immunol.*, 5: 294-298.

Berchieri, A; Lovell, MA and Barrow, PA (1991). The activity in the chicken alimentary tract of bacteriophages lytic for *Salmonella typhimurium*. *Res. Microbiol.*, 142: 541-549.

Bigot, B; Lee, WJ; McIntyre, L; Wilson, T; Hudson, JA; Billington, C and Heinemann, JA (2011). Control of *Listeria monocytogenes* growth in a ready-to-eat poultry product using a bacteriophage. *Food Microbiol.*, 28: 1448-1452.

Biswas, B; Adhya, S; Washart, P; Paul, B; Trostel, AN; Powell, B; Carlton, R and Merril, CR (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant *Enterococcus faecium*. *Infect. Immun.*, 70: 204-210.

Borie, C; Sanchez, ML; Navarro, C; Ramirez, S; Morales, MA; Retamales, J and Robeson, J (2009). Aerosol spray treatment with bacteriophages and competitive exclusion reduces *Salmonella Enteritidis* infection in chickens. *Avian Dis.*, 53: 250-254.

Bren, L (2007). Bacteria-eating virus approved as food additive. *FDA Consum.*, 41: 20-22.

Brüssow, H (2005). Phage therapy: The *Escherichia coli* experience. *Microbiology*. 151: 2133-2140.

Bruttin, A and Brüssow, H (2005). Human volunteers receiving *Escherichia coli* phage T4 orally: A safety test of phage therapy. *Antimicrob. Agents Chemother.*, 49: 2874-2878.

Capparelli, R; Nocerino, N; Iannaccone, M; Ercolini, D; Parlato, M; Chiara, M and Iannelli, D (2010). Bacteriophage therapy of *Salmonella enterica*: a fresh appraisal of bacteriophage therapy. *J. Infect. Dis.*, 201: 52-61.

Carey-smith, GV; Billington, C; Cornelius, AJ; Hudson, JA and Heinemann, JA (2006). Isolation and characterization of bacteriophages infecting *Salmonella* spp. *FEMS Microbiol. Lett.*, 258: 182-186.

Carvalho, CM; Gannon, BW; Halfhide, DE; Santos, SB; Hayes, CM; Roe, JM and Azeredo, J (2010). The *in vivo* efficacy of two administration routes of a phage cocktail to reduce numbers of *Campylobacter coli* and *Campylobacter jejuni* in chickens. *BMC Microbiol.*, 10: 232-242.

Casey, E; Sinderen, DV and Mahony, J (2018). *In vitro* characteristics of phages to guide 'real life' phage therapy suitability. *Viruses*. 10: 163.

Cazares, A; García-Contreras, R and Pérez-Velázquez, J (2020). Eco-evolutionary effects of bacterial cooperation on phage therapy: An unknown risk? *Front. Microbiol.*, 11: 590294.

Chan, BK; Abedon, ST and Loc-carrillo, C (2013). Phage

cocktails and the future of phage therapy. Future Microbiol., 8: 769-783.

Chinivasagam, HN; Estella, W; Maddock, L; Mayer, DG; Weyand, C; Connerton, PL and Connerton, IF (2020). Bacteriophages to control *Campylobacter* in commercially farmed broiler chickens, in Australia. Front. Microbiol., 11: 632.

Choińska-Pulita, A; Mitula, P; Sliwka, P; Laba, W and Skaradzińska A (2015). Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol., 45: 212-221.

Cisek, AA; Dąbrowska, I; Gregorczyk, KP and Wyżewski, Z (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr. Microbiol., 74: 277-283.

Clavijo, V; Baquero, D; Hernandez, S; Farfan, JC; Arias, J; Arévalo, A; Donado-Godoy, P and Vives-Flores, M (2019). Phage cocktail SalmoFREE® reduces *Salmonella* on a commercial broiler farm. Poult. Sci., 98: 5054-5063.

Clavijo, V and Flórez, MJV (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci., 97: 1006-1021.

Clokie, MRJ and Kropinski, AMB (2009). Molecular and applied aspects. In: *Bacteriophages: methods and protocols*. 7th Edn., New York, Humana Press.

Clokie, MRJ; Millard, AD; Letarov, AV and Heaphy, S (2011). Phages in nature. Bacteriophage. 1: 31-45.

Colom, J; Cano-Sarabia, M; Otero, J; Cortés, P; Maspoch, D and Llagostera, M (2015). Liposome-encapsulated bacteriophages for enhanced oral phage therapy against *Salmonella*. Appl. Environ. Microbiol., 81: 4841-4849.

Dąbrowska, K and Abedon, ST (2019). Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev., 83: e00012-19.

Danis-Włodarczyk, K; Dąbrowska, K and Abedon, ST (2021). Phage therapy: the pharmacology of antibacterial viruses. Curr. Issues Mol. Biol., 40: 81-164.

De Jonge, PA; Nobrega, FL; Brouns, SJ and Dutilh, BE (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol., 27: 51-63.

Doffkay, Z; Dömötör, D; Kovács, T and Rákely, G (2015). Bacteriophage therapy against plant, animal and human pathogens. Acta Biol. Szeged., 59: 291-302.

Duc, HM; Son, HM; Honjoh, KI and Miyamoto, T (2018). Isolation and application of bacteriophages to reduce *Salmonella* contamination in raw chicken meat. LWT - Food Sci. Technol., 91: 353-360.

Duckworth, DH (1976). Who discovered bacteriophage? Bacteriol. Rev., 40: 793-802.

El-Gohary, FA; Huff, WE; Huff, GR; Rath, NC; Zhou, ZY and Donoghue, AM (2014). Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult. Sci., 93: 2788-2792.

El-Shibiny, A; Scott, A; Timms, A; Metawea, Y; Connerton, P and Connerton, I (2009). Application of a group II *Campylobacter* bacteriophage to reduce strains of *Campylobacter jejuni* and *Campylobacter coli* colonizing broiler chickens. J. Food Protect., 72: 733-740.

Endersen, L; O'Mahony, J; Hill, C; Ross, RP; McAuliffe, O and Coffey, A (2014). Phage therapy in the food industry. Annu. Rev. Food Sci. Technol., 5: 327-349.

European Food Safety Authority (EFSA) (2009). Panel on Biological Hazards (BIOHAZ): Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed. EFSA J., 7: 1-92.

European Food Safety Authority; European Centre for Disease Prevention and Control (2017). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food. EFSA J., 17: 5598.

Fauconnier, A (2019). Phage therapy regulation: From night to dawn. Viruses. 11: 352.

Fessler, AT; Kadlec, K; Hassel, M; Hauschild, T; Eidam, C; Ehricht, R; Monecke, S and Schwarz, S (2011). Characterization of methicillin-resistant *Staphylococcus aureus* isolates from food and food products of poultry origin in Germany. Appl. Environ. Microbiol., 77: 7151-7157.

Fernandes, S; Proença, D; Cantante, C; Silva, FA; Leandro, C; Lourenço, S; Milheirço, C; de Lencastre, H; Cavaco-Silva, P and Pimentel, M (2012). Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant *Staphylococcus aureus*. Microb. Drug Resist., 18: 333-343.

Fiorentin, L; Vieira, ND and Barioni, WJR (2005). Oral treatment with bacteriophages reduces the concentration of *Salmonella* Enteritidis PT4 in caecal contents of broilers. Avian Pathol., 34: 258-263.

Firleyanti, AS; Connerton, PL and Connerton, IF (2016). *Campylobacter* and their bacteriophages from chicken liver: The prospect for phage biocontrol. Int. J. Food Microbiol., 237: 121-127.

Fister, S; Mester, P; Witte, AK; Sommer, J; Schoder, D and Rossmanith, P (2019). Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods. Trends Food Sci. Technol., 90: 170-174.

Fukushima, K; West, G; Klein, J; Levine, A and Fiocchi, C (1993). Opposite modulatory activity of IL-10 and IL-4 on lamina propria mononuclear-CELLS (LPMC) is stimulus-dependent. Gastroenterology. 104: A702.

Gadde, U; Kim, WH; Oh, ST and Lillehoj, HS (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev., 18: 26-45.

Gamal, AM; Rohaim, MA; Helal, AM; Hamoud, MM; Zaki, MM; Ismael, E; Laban, SE; Nasr, SA; Moubark, ST; Aly, MM; Elagrab, HM; Ismail, TF and Zahran OK (2018). Evaluation of the viricidal efficacy of commercially used disinfectants against Newcastle disease virus. Biosci. Res., 15: 3283-3292.

Garcia, KCOD; Corrêa, IMO; Pereira, LQ; Silva, TM; Mioni, MSR; Izidoro, ACM; Bastos, IHV; Gonçalves, GAM; Okamoto, AS and Andreatti Filho, RL (2017). Bacteriophage use to control *Salmonella* biofilm on surfaces present in chicken slaughterhouses. Poult. Sci., 96: 3392-3398.

García, P; Martínez, B; Obeso, JM and Rodríguez, A (2008). Bacteriophages and their application in food safety. Lett. Appl. Microbiol., 47: 479-485.

Gast, RK (2013). *Salmonella* infections. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), *Diseases of poultry*. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 677-736.

Gervasi, T; Horn, N; Wegmann, U; Dugo, G; Narbad, A and Mayer, MJ (2014). Expression and delivery of an endolysin to combat *Clostridium perfringens*. Appl. Microbiol. Biotechnol., 98: 2495-2505.

Gigante, A and Atterbury, RJ (2019). Veterinary use of bacteriophage therapy in intensively-reared livestock.

Virol. J., 16: 155.

Gill, JJ (2016). 118 phage applications in animal agriculture and food safety. *J. Anim. Sci.*, 94: 57-58.

Gómez-Gómez, C; Blanco-Picazo, P; Brown-Jaque, M; Quirós, P; Rodríguez-Rubio, L; Cerdà-Cuellar, M and Muniesa, M (2019). Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. *Sci. Rep.*, 9: 13281.

Gonçalves, GAM; Donato, TC; Baptista, AAS; de Oliveira Corrêa, IM; Garcia, KCOD and Filho, RLA (2014). Bacteriophage-induced reduction in *Salmonella* Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. *Poult. Sci.*, 93: 216-220.

Goode, D; Allen, VM and Barrow, PA (2003). Reduction of experimental *Salmonella* and *Campylobacter* contamination of chicken skin by application of lytic bacteriophages. *Appl. Environ. Microbiol.*, 69: 5032-5036.

Górski, A; Międzybrodzki, R; Borysowski, J; Dąbrowska, K; Wierzbicki, P; Ohams, M; Korczak-Kowalska, G; Olszowska-Zaremba, N; Łusiak-Szelachowska, M; Klak, M; Jończyk, E; Kaniuga, E; Golaś, A; Purchla, S; Weber-Dąbrowska, B; Letkiewicz, S; Fortuna, W; Szufnarowski, K; Pawełczyk, Z; Rogóż, P and Kłosowska, D (2012). Phage as a modulator of immune responses: practical implications for phage therapy. *Adv. Virus Res.*, 83: 41-71.

Gouvêa, DM; Mendonça, RCS; Lopez, MES and Batalha, LS (2016). Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. *LWT - Food Sci. Technol.*, 67: 159-166.

Grant, A; Hashem, F and Parveen, S (2016). *Salmonella* and *Campylobacter*: Antimicrobial resistance and bacteriophage control in poultry. *Food Microbiol.*, 53: 104-109.

Hargreaves, KR and Clokie, MR (2014). *Clostridium difficile* phages: Still difficult? *Front. Microbiol.*, 5: 184.

Heo, S; Kim, MG; Kwon, M; Lee, HS and Kim, GB (2018). Inhibition of *Clostridium perfringens* using bacteriophages and bacteriocin producing strains. *Korean J. Food Sci. Anim. Resour.*, 38: 88-98. Hietala, V; Horsma-Heikkilä, J; Carron, A; Skurnik, M and Kiljunen, S (2019). The removal of endo- and enterotoxins from bacteriophage preparations. *Front. Microbiol.*, 10: 1674.

Higgins, JP; Higgins, SE; Guenther, KL; Huff, W; Donoghue, AM; Donoghue, DJ and Hargis, BM (2005). Use of a specific bacteriophage treatment to reduce *Salmonella* in poultry products. *Poult. Sci.*, 84: 1141-1145.

Hong, SS; Jeong, J; Lee, J; Kim, S; Min, W and Myung, H (2013). Therapeutic effects of bacteriophages against *Salmonella gallinarum* infection in chickens. *J. Microbiol. Biotechnol.*, 23: 1478-1483.

Housby, JN and Mann, NH (2009). Phage therapy. *Drug Discov. Today*, 14: 536-540.

Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2002). Prevention of *Escherichia coli* infection in broiler chickens with a bacteriophage aerosol spray. *Poult. Sci.*, 81: 1486-1491.

Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2003). Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an *Escherichia coli* respiratory infection. *Poult. Sci.*, 82: 1108-1112.

Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2004). Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. *Poult. Sci.*, 83: 1944-1947.

Huff, WE; Huff, GR; Rath, NC and Donoghue, AM (2010). Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. *Poult. Sci.*, 89: 895-900.

Hungaro, HM; Mendonça, RCS; Gouvêa, DM; Vanetti, MCD and Pinto, CLD (2013). Use of bacteriophages to reduce *Salmonella* in chicken skin in comparison with chemical agents. *Food Res. Int.*, 52: 75-81.

Hussain, MA; Liu, H; Wang, Q; Zhong, F; Guo, Q and Balamurugan, S (2017). Use of encapsulated bacteriophages to enhance farm to fork food safety. *Crit. Rev. Food Sci. Nutr.*, 57: 2801-2810.

Jäckel, C; Hammerl, JA and Hertwig, S (2019). *Campylobacter* phage isolation and characterization: What we have learned so far. *Methods Protoc.*, 2: 18.

Jeon, G and Ahn, J (2020). Assessment of phagemediated inhibition of *Salmonella* Typhimurium treated with sub lethal concentrations of ceftriaxone and ciprofloxacin. *FEMS Microbiol. Lett.*, 367: 1-6.

Jeon, G and Ahn, J (2021). Evaluation of phage adsorption to *Salmonella* Typhimurium exposed to different levels of pH and antibiotic. *Microb. Pathog.*, 150: 104726.

Jiang, L; Jiang, Y; Liu, W; Zheng, R and Li, C (2022). Characterization of the lytic phage flora with a broad host range against multidrug-resistant *Escherichia coli* and evaluation of its efficacy against *E. coli* biofilm formation. *Front. Vet. Sci.*, 9: 906973.

Johnson, RP; Gyles, CL; Huff, WE; Ojha, S; Huff, GR; Rath, NC and Donoghue, AM (2008). Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. *Anim. Health Res. Rev.*, 9: 201-215.

Kim, JW; Cho, YW; Im, HJ; Shin, EM; Seo, HS; Bae, GD; Son, BK and Yang, SY (2016). Bacteriophages: The alternatives to antibiotics for animal feeds. In the 2nd International Symposium on Alternatives to Antibiotics (ATA). Challenges and Solutions in Animal Production; OIE Headquarters, Paris, France 12-15 December 2016.

Kim, SC; Kim, JW; Kim, JU and Kim, IH (2013). Effects of dietary supplementation of bacteriophage on growth performance, nutrient digestibility, blood profiles, carcass characteristics and fecal microflora in broilers. *Food Sci. Anim. Resour.*, 40: 75-81.

Kim, J; Kim, JW; Lee, BB; Lee, GI; Lee, JH; Kim, GB and Kil, DY (2014). Effect of dietary supplementation of bacteriophage on growth performance and cecal bacterial populations in broiler chickens raised in different housing systems. *Livest. Sci.*, 170: 137-141.

Kim, J; Kim, JW; Shin, HS; Kim, MC; Lee, JH; Kim, GB and Kil, DY (2015). Effect of dietary supplementation of bacteriophage on performance, egg quality and caecal bacterial populations in laying hens. *Br. Poult. Sci.*, 56: 132-136.

Knezevic, P; Hoyle, NS; Matsuzaki, S and Gorski, A (2021). Advances in phage therapy: Present challenges and future perspectives. *Front. Microbiol.*, 12: 701898.

Krylov, VN; Tolmachova, TO and Akhveryan, VZ (1993). DNA homology in species of bacteriophages active on *Pseudomonas aeruginosa*. *Arch. Virol.*, 131: 141-151.

Labrie, SJ; Samson, JE and Moineau, S (2010). Bacteriophage resistance mechanisms. *Nat. Rev. Microbiol.*, 8: 317-327.

Leskinen, K; Tuomala, H; Wicklund, A; Horsma-Heikkilä, J; Kuusela, P; Skurnik, M and Kiljunen, S (2017). Characterization of vB_SauM-fRuSau02, a twort-like bacteriophage isolated from a therapeutic phage cocktail. *Viruses*, 9: 258.

Lim, TH; Kim, MS; Lee, DH; Lee, YN; Park, JK; Youn, HN; Lee, HJ; Yang, SY; Cho, YW; Lee, JB; Park, SY; Choi, IS and Song, CS (2012). Use of bacteriophage for biological control of *Salmonella* Enteritidis infection in chicken. *Res. Vet. Sci.*, 93: 1173-1178.

Lim, TH; Lee, DH; Lee, YN; Park, JK; Youn, HN; Kim, MS; Lee, HJ; Yang, SY; Cho, YW; Lee, JB; Park, SY; Choi, IS and Song, CS (2011). Efficacy of bacteriophage therapy on horizontal transmission of *Salmonella* Gallinarum on commercial layer chickens. *Avian Dis.*, 55: 435-438.

Lin, DM; Koskella, B and Lin, HC (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. *World J. Gastrointest. Pharmacol. Ther.*, 8: 162-173.

Loc-Carrillo, C and Abedon, ST (2011). Pros and cons of phage therapy. *Bacteriophage*, 1: 111-114.

Loc-Carrillo, C; Atterbury, RJ; Connerton, PL; Wassenaar, TM and Carlton, RM (2005). Bacteriophage therapy to reduce *Campylobacter jejuni* colonization of broiler chickens. *Appl. Environ. Microbiol.*, 71: 6554-6563.

Lu, Z; Breidt, F; Fleming, HP; Altermann, E and Klaenhammer, TR (2003). Isolation and characterization of a *Lactobacillus plantarum* bacteriophage, Φ JL-1, from a cucumber fermentation. *Int. J. Food Microbiol.*, 84: 225-235.

Lusiak-Szelachowska, M; Zaczek, M; Weber-Dąbrowska, B; Międzybrodzki, R; Klak, M; Fortuna, W; Letkiewicz, S; Rogóż, P; Szufnarowski, K; Jończyk-Matysiak, E; Owczarek, B and Górska, A (2014). Phage neutralization by sera of patients receiving phage therapy. *Viral Immunol.*, 27: 295-304.

Ly-chatain, MH (2014). The factors affecting effectiveness of treatment in phages therapy. *Front. Microbiol.*, 5: 51.

Majewska, J; Kźmierczak, Z; Lahutta, K; Lecion, D; Szymczak, A; Miernikiewicz, P; Drapala, J; Harhala, M; Marek-Bukowiec, KJ; Jedruchniewicz, N; Owczarek, B; Górska, A and Dąbrowska, K (2019). Induction of phage-specific antibodies by two therapeutic staphylococcal bacteriophages administered per os. *Front. Immunol.*, 10: 2607.

Marco, MB; Suarez, VB; Quiberoni, A and Pujato, SA (2019). Inactivation of dairy bacteriophages by thermal and chemical treatments. *Viruses*, 11: 480.

Marek, A; Pyzik, E; Stępień-Pyśniak, D; Urban-Chmiel, R and Nowaczek, A (2019). Characterization of bacteriophages and their carriage in *Staphylococcus aureus* isolated from broilers in Poland. *Br. Poult. Sci.*, 60: 373-380.

Marotta, F; Garofolo, G; Di Donato, G; Aprea, G; Platone, I; Cianciavicchia, S; Alessiani, A and Di Giannatale, E (2015). Population diversity of *Campylobacter jejuni* in poultry and its dynamic of contamination in chicken meat. *BioMed. Res. Int.*, 2015: 859845.

Miller, RW; Skinner, EJ; Sulakvelidze, A; Mathis, GF and Hofacre, CL (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with *Clostridium perfringens*. *Avian Dis.*, 54: 33-40.

Monk, AB; Rees, CD; Barrow, P; Hagens, S and Harper, DR (2010). Bacteriophage applications: Where are we now? *Lett. Appl. Microbiol.*, 51: 363-369.

Moore, P; Evenson, A; Luckey, TD; McCoy, E; Elvehjem, C and Hart, EB (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. *J. Biol. Chem.*, 165: 437-441.

Moye, ZD; Woolston, J and Sulakvelidze, A (2018). Bacteriophage applications for food production and processing. *Viruses*, 10: 205.

Mund, MD; Khan, UH; Tahir, U; Mustafa, BE and Fayyaz, A (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. *Int. J. Food Prop.*, 20: 1433-1446.

Mutti, M and Corsini, L (2019). Robust approaches for the production of active ingredient and drug product for human phage therapy. *Front. Microbiol.*, 10: 2289.

Nabil, NM; Tawakol, MM and Hassan, HM (2018). Assessing the impact of bacteriophages in the treatment of *Salmonella* in broiler chickens. *Infect. Ecol. Epidemiol.*, 8: 1539056.

Naghizadeh, M; Amir, M; Torshizi, K; Rahimi, S and Dalgaard, TS (2018). Synergistic effect of phage therapy using a cocktail rather than a single phage in the control of severe colibacillosis in quails. *Poult. Sci.*, 98: 653-663.

Naghizadeh, M; Karimi Torshizi, MA; Rahimi, S; Engberg, RM and Sørensen Dalgaard, T (2019). Effect of serum anti-phage activity on colibacillosis control by repeated phage therapy in broilers. *Vet. Microbiol.*, 234: 61-71.

Nariya, H; Miyata, S; Tamai, E; Sekiya, H; Maki, J and Okabe, A (2011). Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of *Clostridium perfringens*. *Appl. Microbiol. Biotechnol.*, 90: 1973-1979.

Nilsson, AS (2014). Phage therapy—Constraints and possibilities. *Ups. J. Med. Sci.*, 119: 192-198.

Nolan, LK; Barnes, HJ; Vaillancourt, JP; Abdul-Aziz, T and Logue, CM (2013). Colibacillosis. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), *Diseases of poultry*. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 751-805.

Noor, M; Runa, N and Husna, A (2020). Evaluation of the effect of dietary supplementation of bacteriophage on production performance and excreta microflora of commercial broiler and layer chickens in Bangladesh. *MOJ Proteom. Bioinform.*, 9: 27-31.

Nowaczek, A; Urban-Chmiel, R; Dec, M; Puchalski, A; Stępień-Pyśniak, D; Marek, A and Pyzik, E (2019). *Campylobacter* spp. and bacteriophages from broiler chickens: Characterization of antibiotic susceptibility profiles and lytic bacteriophages. *MicrobiologyOpen*, 8: e00784.

Oliveira, A; Sereno, R and Azeredo, J (2010). *In vivo* efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. *Vet. Microbiol.*, 146: 303-308.

Pan, D and Yu, Z (2014). Intestinal microbiome of poultry and its interaction with host and diet. *Gut Microbes*, 5: 108-119.

Perera, MN; Abuladze, T; Li, M; Woolston, J and Sulakvelidze, A (2015). Bacteriophage cocktail significantly reduces or eliminates *Listeria monocytogenes* contamination on lettuce, apples, cheese, smoked salmon and frozen foods. *Food Microbiol.*, 52: 42-48.

Pirnay, JP; Blasdel, BG; Bretaudeau, L; Buckling, A; Chanishvili, N; Clark, JR; Corte-Real, S; Debarbieux, L; Dublanchet, A; De Vos, D; Gabard, J; Garcia, M; Goderdzishvili, M; Górska, A; Hardcastle, J; Huys, I; Kutter, E; Lavigne, R; Merabishvili, M; Olchawa, E; Parikka, KJ; Patey, O; Pouilot, F; Resch, G; Rohde, C; Scheres, J; Skurnik, M; Vaneechoutte, M; Van Parys, L; Verbeken, G; Zizi, M and Van den Eede, G (2015). Quality and safety requirements for sustainable phage therapy products. *Pharm. Res.*, 32: 2173-2179.

Rahaman, MT; Rahman, M; Rahman, MB; Khan, MFR; Hossen, ML; Parvej, MS and Ahmed, S (2014). Poultry *Salmonella* specific bacteriophage isolation and characterization. *Bangladesh J. Vet. Med.*, 12: 107-114.

Regulski, K; Champion-Arnaud, P and Gabard, J (2021). Bacteriophage manufacturing: From early twentieth-

century processes to current GMP. In: Harper, D; Abedon, S; Burrowes, B and McConville, M (Eds.), *Bacteriophages: Biology, technology, therapy*. Cham, Switzerland, Springer. PP: 699-729.

Richards, PJ; Connerton, PL and Connerton, IF (2019). Phage biocontrol of *Campylobacter jejuni* in chickens does not produce collateral effects on the gut microbiota. *Front. Microbiol.*, 10: 476.

Rubio, LA (2019). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. *Poult. Sci.*, 98: 695-706.

Sahin, O; Kassem, II; Shen, Z; Lin, J; Rajashekara, G and Zhang, Q (2015). *Campylobacter* in poultry: Ecology and potential interventions. *Avian Dis.*, 59: 185-200.

Santos, SB; Fernandes, E; Carvalho, CM; Sillankorva, S; Krylov, VN; Pleteneva, EA; Shaburova, OV; Nicolau, A; Ferreira, EC and Azeredo, J (2010). Selection and characterization of a multivalent *Salmonella* phage and its production in a nonpathogenic *Escherichia coli* strain. *Appl. Environ. Microbiol.*, 76: 7338-7342.

Sarrami, Z; Sedghi, M; Mohammadi, I; Kim, WK and Mahdavi, AH (2022). Effects of bacteriophage supplement on the growth performance, microbial population, and *PGC-1α* and *TLR4* gene expressions of broiler chickens. *Sci. Rep.*, 12: 14391.

Schreiber, S; Heinig, T; Thiele, H and Raedler, A (1995). Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. *Gastroenterology*, 108: 1434-1444.

Seal, BS (2013). Characterization of bacteriophages virulent for *Clostridium perfringens* and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. *Poult. Sci.*, 92: 526-533.

Sellaoui, S; Alloui, N; Mehenaoui, S and Djaaba, S (2012). Evaluation of immune status of the chicken using morphometry and histology of the bursa of fabricius. *J. Vet. Adv.*, 2: 440-443.

Sillankorva, SM; Oliveira, H and Azeredo, J (2012). Bacteriophages and their role in food safety. *Int. J. Microbiol.*, 2012: 863945.

Sklar, IB and Joerger, RD (2001). Attempts to utilize bacteriophage to combat *Salmonella enterica* serovar Enteritidis infection in chickens. *J. Food Saf.*, 21: 15-29.

Smith, HW (1959). The bacteriophages of *Clostridium perfringens*. *J. Gen. Microbiol.*, 21: 622-630.

Sommer, J; Trautner, C; Witte, AK; Fister, S; Schoder, D; Rossmanith, P and Mester, PJ (2019). Don't shut the stable door after the phage has bolted-the importance of bacteriophage inactivation in food environments. *Viruses*, 11: 468.

Stern, A and Sorek, R (2011). The phage-host arms race: shaping the evolution of microbes. *Bioessays*, 33: 43-51.

Sukumaran, AT; Nannapaneni, R; Kies, A and Sharma, CS (2015). Reduction of *Salmonella* on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. *Int. J. Food Microbiol.*, 207: 8-15.

Tagliaferri, TL; Jansen, M and Horz, HP (2019). Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. *Front. Cell. Infect. Microbiol.*, 9: 22.

Tawakol, MM; Nabil, NM and Samy, A (2019). Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with *Escherichia coli* and infectious bronchitis in chickens. *Infect. Ecol. Epidemiol.*, 9: 1686822.

Thanki, AM; Brown, N; Millard, AD and Clokie, MRJ (2019). Genomic characterization of jumbo *Salmonella* phages that effectively target United Kingdom *Salmonella* serotypes. *Front. Microbiol.*, 10: 1491.

Toro, H; Price, SB; McKee, AS; Hoerr, FJ; Krehling, J; Perdue, M and Bauermeister, L (2005). Use of bacteriophages in combination with competitive exclusion to reduce *Salmonella* from infected chickens. *Avian Dis.*, 49: 118-124.

Torres-Acosta, MA; Castaneda-Aponte, HM; Mora-Galvez, LM; Gil-Garzon, MR; Banda-Magaña, MP; Marcellin, E; Mayolo-Deloisa, K and Licona-Cassani, C (2021). Comparative economic analysis between endogenous and recombinant production of hyaluronic acid. *Front. Bioeng. Biotechnol.*, 9: 680278.

Torres-Barceló, C and Hochberg, ME (2016). Evolutionary rationale for phages as complements of antibiotics. *Trends Microbiol.*, 24: 249-256.

Twort, FW (1915). An investigation on the nature of ultra-microscopic viruses. *Lancet*, 186: 1241-1243.

van der Wielen, PW; Biesterveld, S; Notermans, S; Hofstra, H; Urlings, BA and van Knapen, F (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. *Appl. Environ. Microbiol.*, 66: 2536-2540.

Van Immerseel, F; De Buck, J; Pasmans, F; Huyghebaert, G; Haesebrouck, F and Ducatelle, R (2004). *Clostridium perfringens* in poultry: An emerging threat for animal and public health. *Avian Pathol.*, 33: 537-549.

Vikram, A; Woolston, J and Sulakvelidze, A (2021). Phage biocontrol applications in food production and processing. *Curr. Issues Mol. Biol.*, 40: 267-302.

Wagenaar, JA; Van Bergen, MAP; Mueller, MA; Wassenaar, TM and Carlton, RM (2005). Phage therapy reduces *Campylobacter jejuni* colonization in broilers. *Vet. Microbiol.*, 109: 275-283.

Wang, L; Tan, Y; Liao, Y; Li, L; Han, K; Bai, H; Cao, Y; Li, J; Gong, Y; Wang, X and Peng, H (2022). Isolation, characterization and whole genome analysis of an avian pathogenic *Escherichia coli* phage vB_EcoS_GN06. *Vet. Sci.*, 9: 675.

Wang, J; Yan, L; Lee, JH and Kim, IH (2013). Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. *Asian-Australas. J. Anim. Sci.*, 26: 573-578.

Wernicki, A; Nowaczek, A and Urban-chmiel, R (2017). Bacteriophage therapy to combat bacterial infections in poultry. *Virol. J.*, 14: 1-13.

Wójcik, EA; Wojtasik, A; Górecka, E; Stańczyk, M and Dastych, J (2015). Application of bacteriophage preparation BAFASAL® in broiler chickens experimentally exposed to *Salmonella* spp. *SSRCI Vet. Med. Prod. Feed Add.*, 16: 241-251.

Woźnica, WM; Bigos, J and Łobocka, MB (2015). Lysis of bacterial cells in the process of bacteriophage release-canonical and newly discovered mechanisms. *Adv. Hyg. Experm. Med.*, 69: 114-126.

Wright, A; Hawkins, CH; Anggård, EE and Harper, DR (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant *Pseudomonas aeruginosa*; a preliminary report of efficacy. *Clin. Otolaryngol.*, 34: 349-357.

Wysok, B; Pastuszak-Frak, M; Uradziński, J; Gomółka-Pawlicka, M; Dzisko, J; Dziedziech, M and Marko, A (2015). Occurrence and antibiotic resistance of *Campylobacter* spp. strains isolated from pigs and humans. *Med. Med.*, 71: 801-806.

Xie, H; Zhuang, X; Kong, J; Ma, G and Zhang, H (2005).

Bacteriophage Esc-A is an efficient therapy for *Escherichia coli* 3-1 caused diarrhea in chickens. *J. Gen. Appl. Microbiol.*, 51: 159-163.

Xu, Y; Yu, X; Gu, Y; Huang, X; Liu, G and Liu, X (2018). Characterization and genomic study of phage vB_EcoS-B2 infecting multidrug-resistant *Escherichia coli*. *Front. Microbiol.*, 9: 793.

Yadav, S and Jha, R (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. *J. Anim. Sci. Biotechnol.*, 10: 1-11.

Yan, T; Liang, L; Yin, P; Zhou, Y; Sharoba, AM; Lu, Q; Dong, X; Liu, K; Connerton, IF and Li, J (2020). Application of a novel phage LPSEYT for biological control of *Salmonella* in foods. *Microorganisms*. 8: 400.

Young, KT; Davis, LM and DiRita, VJ (2007). *Campylobacter jejuni*: Molecular biology and pathogenesis. *Nat. Rev. Microbiol.*, 5: 665-679.

Zaczek, M; Łusiak-Szelachowska, M; Jończyk-Matysiak, E; Weber-Dąbrowska, B; Międzybrodzki, R; Owczarek, B; Kopciuch, A; Fortuna, W; Rogóż, P and Górska, A (2016). Antibody production in response to Staphylococcal ms-1 phage cocktail in patients undergoing phage therapy. *Front. Microbiol.*, 7: 1681.

Żbikowska, K; Michalczuk, M and Dolka, B (2020). The use of bacteriophages in the poultry industry. *Animals (Basel)*. 10: 872.

Zhao, P; Baek, H and Kim, J (2012). Effects of bacteriophage supplementation on egg performance, egg quality, excreta microflora, and moisture content in laying hens. *Asian-Australas. J. Anim. Sci.*, 25: 1015-1020.

Zimmer, M; Scherer, S and Loessner, MJ (2002b). Genomic analysis of *Clostridium perfringens* bacteriophage phi3626, which integrates into guaA and possibly affects sporulation. *J. Bacteriol.*, 184: 4359-4368.

Zimmer, M; Vukov, N; Scherer, S and Loessner, MJ (2002a). The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested *Clostridium perfringens* strains. *Appl. Environ. Microbiol.*, 68: 5311-5317.