الگوهای مقاومت ضد میکروبی اشریشیا کلی و کلبسیلا پنومونیه تولید کننده ESBL مقاوم به چند دارو جدا شده از گوسفند و بز

نوع مقاله : مقاله کامل

نویسندگان

10.22099/ijvr.2025.51659.7682

چکیده

پیشینه: یک نگرانی جدی جامعه در سراسر جهان گسترش هشدار دهنده باکتری‌های انتروباکتر تولید کننده آنزیم‌های بتالاکتاماز با طیف گسترده(ESBL)  است. حیوانات تولید کننده غذا، باکتری‌های انتروباکتر تولید کننده ESBL را در خود جای داده و این گونه‌های مقاوم پاتوژن را از طریق مدفوع منتشر می‌کنند. تولیدکنندگان ESBL فنوتیپ‌های مقاوم به چند دارو هستند که برای مدیریت بیماری در محیط‌های بالینی چالش ایجاد می‌کنند. هدف: هدف از این مطالعه بررسی شیوع اشریشیا کلی و کلبسیلا پنومونیه مولد ESBL از نمونه مدفوع (n=340) گوسفند و بز سالم (n=300) و گوسفندها و بزهای اسهالی (n=40) و سواب از دست کارگران (n=70) بود. روش کار: باکتری‌های احتمالی مولد ESBL با استفاده از آگار ESBL شناسایی شدند که با روش دیسک ترکیبی (CDM) تایید شد. تشخیص ژنوتیپی ژن‌های مقاومت به بتالاکتاماز، کینولون‌ها و تتراسایکلین با استفاده از PCR انجام شد. نتایج: در مجموع 156 اشریشیا کلی انتروپاتوژن از گوسفند (79/170) و بز (77/170) بازیابی شد. داده‌های فنوتیپی مقاومت ضد میکروبی نشان دهنده مقاومت بالا در برابر سفازولین با 13/91% و 41/84% در گوسفند و بز بود. مقاومت کم در برابر کارباپنم‌ها ثبت شد. تمام جدایه‌های تولید کننده ESBL شاخص مقاومت آنتی بیوتیکی چندگانه (MAR) >0.2 را نشان دادند. ژن غالب بتالاکتاماز یافت شده blaTEM بود که در 110 (51/70%) جدایه و blaCTXM در 80 (28/51%) جدایه شناسایی شد. نتیجه‌گیری: یافته‌های مطالعه حاضر شیوع بالایی از مقاومت چند دارویی اشریشیا کلی و کلبسیلا پنومونیه را در حیوانات تولید کننده غذا نشان داد. این یک موضوع نگران کننده است و نیاز جدی به اجرای رویکردهای موثر برای کاهش مقاومت چند دارویی در ارگانیسم‌های معمولی دارد.

کلیدواژه‌ها

موضوعات


Abrar, S; Ain, NU; Liaqat, H; Hussain, S; Rasheed, F and Riaz, S (2019). Distribution of bla CTX-M, bla TEM, bla SHV and bla OXA genes in extended-spectrum-β-lactamase-producing clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrob. Resist. Infect. Control. 8: 1-10.
Agrawal, S; Singh, AP; Singh, R; Saikia, R; Choudhury, S; Shukla, A; Prabhu, SN and Agrawal, J (2021). Molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolated from postpartum uterine infection in dairy cattle in India. Vet. World. 14: 200-209.
Alegria, A; Arias-Temprano, M; Fernandez-Natal, I; Rodriguez-Calleja, JM; Garcia-Lopez, ML and Santos, JA (2020). Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. Int. J. Environ. Res. Public Health. 17: 1-2.
Arun, A; Jaiswal, U; Tripathi, S; Singh, AP; Choudhury, S and Prabhu, SN (2022). Surveillance of carbapenem-resistant gram-negative bacteria from animal sources in Mathura region, Uttar Pradesh, India. Explor. Anim. Med. Res., 12: 91-98.
Athanasakopoulou, Z; Reinicke, M; Diezel, C; Sofia, M; Chatzopoulos, DC; Braun, SD; Reissig, A; Spyrou, V; Monecke, S; Ehricht, R and Tsilipounidaki, K (2021). Antimicrobial resistance genes in ESBL-producing Escherichia coli isolates from animals in Greece. Antibiotics. 10: 3-4.
Ayukekbong, JA; Ntemgwa, M and Atabe, AN (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob. Resist. Infect. Control. 6: 1-8.
Banerjee, J; Bhattacharyya, D; Habib, M; Chaudhary, S; Biswas, S; Maji, C; Nanda, PK; Das, AK; Dandapat, P; Samanta, I; Lorenzo, JM; Dutt, T and Bandyopadhyay, S (2022). Antimicrobial resistance pattern, clustering mechanisms and correlation matrix of drug-resistant Escherichia coli in black bengal goats in West Bengal, India. J. Antibiot., 11: 7-8.
Bank, W (2017). Drug-resistant infections: a threat to our economic future. World Bank. PP: 17-19.
Boonyasiri, A; Tangkoskul, T; Seenama, C; Saiyarin, J; Tiengrim, S and Thamlikitkul, V (2014). Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health, 108: 235-245.
Bradford, PA (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 14: 933-951.
Brossier, F; Sougakoff, W and Jarlier, V (2008). Phenotypic detection of ESBL production in Enterobacteriaceae: review and bench guide. Clin. Microbiol. Infect., 14: 90-103.
Brower, CH; Mandal, S; Hayer, S; Sran, M; Zehra, A; Patel, SJ; Kaur, R; Chatterjee, L; Mishra, S; Das, BR and Singh, P (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environ. Health Perspect., 125: 077015-5.
Bush, K and Jacoby, GA (2010). Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 54: 969-976.
Cantón, R; Coque, TM and Baquero, F (2003). Multi-resistant gram-negative bacilli: from epidemics to endemics. Curr. Opin. Infect. Dis., 16: 315-325.
Castanheira, M; Simner, PJ and Bradford, PA (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resis., 3: 8-10.
Cavaco, LM; Abatih, E; Aarestrup, FM and Guardabassi, L (2008). Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome. Antimicrob. Agents Chemother., 52: 3612-616.
Chen, S; Zhao, S; White, DG; Schroeder, CM; Lu, R; Yang, H; McDermott, PF; Ayers, S and Meng, J (2004). Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol., 70: 1-7.
CLSI (2020). Performance standards for antimicrobial susceptibility testing. (M100 30th Edn.), PP: 60-71.
Da Costa, PM; Loureiro, L and Matos, AJ (2013). Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int. J. Environ. Res. Public Health. 10: 278-294.
Dai, L; Lu, LM; Wu, CM; Li, BB; Huang, SY; Wang, SC; Qi, YH and Shen, JZ (2008). Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. FEMS Microbiol. Lett., 286: 178-183.
Das, L; Borah, P; Sharma, RK; Malakar, D; Saikia, GK; Sharma, K; Tamuly, S and Dutta, R (2020). Phenotypic and molecular characterization of extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae isolates from various samples of animal origin from Assam, India. bioRxiv. 2020: 2020-05.
Davis, R and Brown, PD (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J. Med. Microbiol., 65: 261-271.
Doosti, A; Pourabbas, M; Arshi, A; Chehelgerdi, M and Kabiri, H (2015). TEM and SHV genes in Klebsiella pneumoniae isolated from cockroaches and their antimicrobial resistance pattern. Osong Public Health Res. Perspect., 6: 3-8.
Durso, LM and Cook, KL (2014). Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr. Opin. Microbiol., 19: 37-44.
Dutta, TK; Warjri, I; Roychoudhury, P; Lalzampuia, H; Samanta, I; Joardar, SN; Bandyopadhyay, S and Chandra, R (2013). Extended-spectrum-β-lactamase-producing Escherichia coli isolate possessing the Shiga toxin gene (stx1) belonging to the O64 serogroup associated with human disease in India. J. Clin. Microbiol., 51: 2008-2009.
Elsharkawy, SA; Latif, H; Purnawarman, T and Rahayu, P (2024). Analysis of beta-lactam antibiotic resistance genes in Escherichia coli isolated from dairy cattle manure in Bogor, Indonesia. Ger. J. Vet. Res., 4: 16-26.
Espadale, E; Pinchbeck, G; Williams, NJ; Timofte, D; McIntyre, KM and Schmidt, VM (2018). Are the hands of veterinary staff a reservoir for antimicrobial-resistant bacteria? A randomized study to evaluate two hand hygiene rubs in a veterinary hospital. Microb. Drug Resist., 24: 1607-1616.
Founou, RC; Founou, LL and Essack, SY (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PloS One. 12: 2-3.
Heredia, N and García, S (2018). Animals as sources of food-borne pathogens: A review. Anim. Nutr., 4: 250-255.
Ho, PL; Chow, KH; Lai, EL; Lo, WU; Yeung, MK; Chan, J; Chan, PY and Yuen, KY (2011). Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to ‘critically important’antibiotics among food animals in Hong Kong, 2008-10. J. Antimicrob. Chemother., 66: 765-768.
Huang, YH; Kuan, NL and Yeh, KS (2020). Characteristics of extended-spectrum β-lactamase–producing Escherichia coli from dogs and cats admitted to a veterinary teaching hospital in Taipei, Taiwan from 2014 to 2017. Front. Vet. Sci., 7: 2-3.
Kashoma, IP; Kassem, II; Kumar, A; Kessy, BM; Gebreyes, W; Kazwala, RR and Rajashekara, G (2015). Antimicrobial resistance and genotypic diversity of Campylobacter isolated from pigs, dairy, and beef cattle in Tanzania. Front. Microbiol., 6: 3-4.
Klotz, P; Higgins, PG; Schaubmar, AR; Failing, K; Leidner, U; Seifert, H; Scheufen, S; Semmler, T and Ewers, C (2019). Seasonal occurrence and carbapenem susceptibility of bovine Acinetobacter baumannii in Germany. Front. Microbiol., 10: 2-3.
Krumperman, PH (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol., 46: 165-170.
Kumar, K; Sharma, NS; Kaur, P and Arora, AK (2022). Molecular detection of antimicrobial resistance genes and virulence genes in E. coli isolated from sheep and goat fecal samples. Indian J. Anim. Res., 56: 208-214.
Lalruatdiki, A; Dutta, TK; Roychoudhury, P and Subudhi, PK (2018). Extended-spectrum β-lactamases producing multidrug resistance Escherichia coli, Salmonella and Klebsiella pneumoniae in pig population of Assam and Meghalaya, India. Vet. World. 11: 868-873.
Laxminarayan, R; Duse, A; Wattal, C; Zaidi, AK; Wertheim, HF; Sumpradit, N; Vlieghe, E; Hara, GL; Gould, IM; Goossens, H and Greko, C (2013). Antibiotic resistance- the need for global solutions. Lancet Infect. Dis., 13: 1057-1098.
Lee, D; Oh, JY; Sum, S and Park, HM (2021). Prevalence and antimicrobial resistance of Klebsiella species isolated from clinically ill companion animals. J. Vet. Sci., 22: 5-9.
Leifert, C; Ball, K; Volakakis, N and Cooper, JM (2008). Control of enteric pathogens in ready to eat vegetable crops in organic and ‘low input’production systems: a HACCP based approach. J. Appl. Microbiol., 105: 931-950.
Liu, XJ; Lyu, Y; Li, Y; Xue, F and Liu, J (2016). Trends in antimicrobial resistance against Enterobacteriaceae strains isolated from blood: A 10-year epidemiological study in mainland China (2004-2014). Chin. Med. J., 130: 2050-2055.
Liu, JH; Wei, SY; Ma, JY; Zeng, ZL; Lü, DH; Yang, GX and Chen, ZL (2007). Detection and characterisation of CTX-M and CMY-2 β-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China. Int. J. Antimicrob. Agents. 29: 576-581.
Magiorakos, AP; Srinivasan, A; Carey, RB; Carmeli, Y; Falagas, ME; Giske, CG; Harbarth, S; Hindler, JF; Kahlmeter, G; Olsson-Liljequist, B and Paterson, DL (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 18: 268-281.
Maynard, C; Fairbrother, JM; Bekal, S; Sanschagrin, F; Levesque, RC; Brousseau, R; Masson, L; Lariviere, S and Harel, J (2003). Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother., 47: 3214-21.
Medeiros, AA (1997). Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis., 24: 19-45.
Moudgil, P; Bedi, JS; Moudgil, AD; Gill, JPS and Aulakh, RS (2018). Emerging issue of antibiotic resistance from food producing animals in India: Perspective and legal framework. Food Rev. Int., 34: 447-462.
Mthembu, MS; Biyela, PT; Djarova, TG and Basson, AK (2010). The use of antibiotic resistance profiling as a means of tracing sources of fecal contamination in source waters. Water Sci. Technol., 10: 209-215.
Mthembu, TP; Zishiri, OT and El Zowalaty, ME (2019). Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect. Drug Resist., 12: 3537-3548.
Mulani, MS; Kamble, EE; Kumkar, SN; Tawre, MS and Pardesi, KR (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol., 10: 1-2.
Navarro, F; Perez-Trallero, E; Marimon, JM; Aliaga, R; Gomariz, M and Mirelis, B (2001). CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999–December 2000). J. Antimicrob. Chemother., 48: 383-389.
Ng, LK; Martin, I; Alfa, M and Mulvey, M (2001). Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes. 15: 209-215.
Njeru, J (2020). Emerging carbapenem resistance in ESKAPE pathogens in sub-Saharan Africa and the way forward. Ger. J. Microbiol., 1: 3-6.
Nshama, RP; Katakweba, AS; Kashoma, IP; Gahamanyi, N and Komba, EV (2022). Prevalence and antimicrobial susceptibility profiles of Campylobacter coli isolated from broilers and layers in Mwanza and Arusha, Tanzania. Ger. J. Vet. Res., 2: 16-24.
Osundiya, OO; Oladele, RO and Oduyebo, OO (2013). Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos university teaching hospital. Afr. J. Clin. Exp. Microbiol., 14: 164-168.
Paterson, DL and Bonomo, RA (2005). Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev., 18: 657-686.
Pires, J; Huisman, JS; Bonhoeffer, S and Van Boeckel, TP (2022). Increase in antimicrobial resistance in Escherichia coli in food animals between 1980 and 2018 assessed using genomes from public databases. J. Antimicrob. Chemother., 77: 646-655.
Ramatla, T; Mafokwane, T; Lekota, K; Monyama, M; Khasapane, G; Serage, N; Nkhebenyane, J; Bezuidenhout, C and Thekisoe, O (2023). “One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob., 22: 11-13.
Robicsek, A; Strahilevitz, J; Sahm, DF; Jacoby, GA and Hooper, DC (2006). qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother., 50: 2872-2874.
Sandhu, R; Dahiya, S and Sayal, P (2016). Evaluation of multiple antibiotic resistance (MAR) index and doxycycline susceptibility of Acinetobacter species among inpatients. Indian J. Microbiol. Res., 3: 299-304.
Schmiedel, J: Falgenhauer, L; Domann, E; Bauerfeind, R; Prenger-Berninghoff, E; Imirzalioglu, C and Chakraborty, T (2014). Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol., 14: 1-13.
Schmitt, K; Kuster, SP; Zurfluh, K; Jud, RS; Sykes, JE; Stephan, R and Willi, B (2021). Transmission chains of extended-spectrum beta-lactamase-producing Entero-bacteriaceae at the companion animal veterinary clinic–household interface. Antibiot., 10: 8-9.
Shikha, D; Wazir, VS; Rashid, M; Bhat, MA; Sharma, I; Taku, A; Gazal, S; Mishra, S; Tikoo, M and Singh, BP (2022). Molecular characterization and antimicrobial resistance profiling of extended spectrum Beta-lactamase (ESBL) producing Escherichia coli in Bovines from J and K, India. Ind. J. Anim. Res., 1: 2-3.
Singh, F; Hirpurkar, SD; Shakya, S; Rawat, N; Devangan, P; Khan, FF and Bhandekar, SK (2017). Presence of enterobacteria producing extended-spectrum beta-lactamases and/or carbapenemases in animals, humans and environment in India. Thai J. Vet. Med., 47: 35-43.
Song, J; Oh, SS; Kim, J; Park, S and Shin, J (2020). Clinically relevant extended-spectrum β-lactamase–producing Escherichia coli isolates from food animals in South Korea. Front. Microbiol., 11: 3-4.
Suay-García, B; Galán, F; Rodríguez-Iglesias, MA and Pérez-Gracia, MT (2019). Detection and characterization of extended-spectrum beta-lactamases-producing Escherichia coli in animals. Vector-Borne Zoonot. Dis., 19: 115-120.
Sundqvist, M; Geli, P; Andersson, DI; Sjölund-Karlsson, M; Runehagen, A; Cars, H; Abelson-Storby, K; Cars, O and Kahlmeter, G (2010). Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J. Antimicrob. Chemother., 65: 350-360.
Sweileh, WM (2021). Global research activity on antimicrobial resistance in food-producing animals. Arch. Pub. Health. 79: 1-11.
Tacconelli, E; Sifakis, F; Harbarth, S; Schrijver, R; van Mourik, M; Voss, A; Sharland, M; Rajendran, NB; Rodríguez-Baño, J; Bielicki, J and de Kraker, M (2018). Surveillance for control of antimicrobial resistance. Lancet Infect. Dis., 18: e99-e106.
Tewari, R; Mitra, S; Ganaie, F; Das, S; Chakraborty, A; Venugopal, N; Shome, R; Rahman, H and Shome, BR (2019). Dissemination and characterisation of Escherichia coli producing extended-spectrum β-lactamases, AmpC β-lactamases and metallo-β-lactamases from livestock and poultry in Northeast India: A molecular surveillance approach. J. Glob. Antimicrob. Resist., 17: 209-215.
Torres, RT: Carvalho, J; Fernandes, J; Palmeira, JD; Cunha, MV and Fonseca, C (2021). Mapping the scientific knowledge of antimicrobial resistance in food-producing animals. One Health. 13: 1-2.
Van Boeckel, TP; Pires, J; Silvester, R; Zhao, C; Song, J; Criscuolo, NG; Gilbert, M; Bonhoeffer, S and Laxminarayan, R (2019). Global trends in antimicrobial
resistance in animals in low-and middle-income countries. Science. 365: 1251-1252.
Vantarakis, A; Venieri, D; Komninou, G and Papapetropoulou, M (2006). Differentiation of fecal Escherichia coli from humans and animals by multiple antibiotic resistance analysis. Lett. Appl. Microbiol., 42: 71-77.
VinodhKumar, OR; Singh, BR; Sinha, DK; Pruthvishree, BS; Tamta, S; Dubal, ZB; Karthikeyan, R; Rupner, RN and Malik, YS (2019). Risk factor analysis, antimicrobial resistance and pathotyping of Escherichia coli associated with pre-and post-weaning piglet diarrhoea in organised farms, India. Epidemiol. Infect., 147: 1-6.
Wall, BA; Mateus, ALP; Marshall, L; Pfeiffer, DU; Lubroth, J; Ormel, HJ; Otto, P and Patriarchi, A (2016). Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Food and Agriculture Organization of the United Nations. PP: 1-2.
Wang, Y; Zhou, J; Li, X; Ma, L; Cao, X; Hu, W; Zhao, L; Jing, W; Lan, X; Li, Y and Gong, X (2020). Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J. Glob. Antimicrob. Resist., 22: 726-732.
Wareth, G and Neubauer, H (2021). The animal-foods-environment interface of Klebsiella pneumoniae in Germany: an observational study on pathogenicity, resistance development and the current situation. Vet. Res., 52: 1-3.
WHO (2014). Antimicrobial resistance: global report on surveillance. World Health Organization. PP: 2-3.
WHO (2019). Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. World Health Organization. PP: 1-2.
Widodo, A; Effendi, MH and Khairullah, AR (2020). Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from livestock. Sys. Rev. Pharm., 11: 382-392.
Widodo, A; Lamid, M; Effendi, MH; Tyasningsih, W; Raharjo, D; Khairullah, AR; Kurniawan, SC; Yustinasari, LR; Riwu, KHP and Silaen, OSM (2023). Molecular identification of blaTEM and blaCTX-M genes in multidrug-resistant Escherichia coli found in milk samples from dairy cattle farms in Tulungagung, Indonesia. J. Vet. Res., 67: 381-388.
Woodford, N; Wareham, DW; Guerra, B and Teale, C (2014). Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J. Antimicrob. Chemother., 69: 287-291.
Yang, H; Chen, S; White, DG; Zhao, S; McDermott, P; Walker, R and Meng, J (2004). Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J. Clin. Microbiol., 42: 3483-3489.
Yang, L; Shen, Y; Jiang, J; Wang, X; Shao, D; Lam, MM; Holt KE; Shao, B; Wu, C; Shen, J and Walsh, TR (2022). Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. Nat. Food 3: 197-205.