بررسی اثرات سمیت سلولی زهرهای مختلف زنبور عسل بر روی سلول‌های Caco-2 و T98G در شرایط آزمایشگاهی

نوع مقاله : مقاله کامل

نویسندگان

10.22099/ijvr.2025.50439.7442

چکیده

پیشینه: زهر زنبور عسل (Apis mellifera) حاوی چندین پپتید فعال زیستی از جمله ملیتین، آپامین، آنزیم‌ها و ترکیبات غیرپپتیدی است. زهر زنبور عسل به دلیل ترکیبات فعال زیستی، دارای خواص ضد باکتریایی، ضد ویروسی، ضد التهابی و سمیت سلولی است. هدف: این مطالعه با هدف بررسی اثرات سمیت سلولی زهرهای زنبور عسل جمع‌آوری شده از استان‌های مختلف ترکیه بر روی رده‌های سلولی آدنوکارسینوم روده‌ای (Caco-2) و گلیوبلاستوما مولتیفرم (T98G) انجام شد. روش کار: میزان آپامین، فسفولیپاز A2 و ملیتین در زهرهای زنبور عسل با استفاده از دستگاه کروماتوگرافی مایع با فشار بالا (HPLC) مجهز به دتکتور طول موج متغیر آنالیز شد. میزان زنده‌مانی سلول‌ها پس از 24 ساعت قرارگیری در معرض زهر زنبور عسل با استفاده از آزمون‌های MTT، قرمز خنثی (NR) و نشت دهیدروژناز (LDH) تعیین شد. نتایج: آنالیز محتوایی نشان داد که در میان زهرهای مورد بررسی، زهر زنبور عسل استان موغله بیشترین میزان آپامین و زهر استان دنیزلی بیشترین میزان فسفولیپاز A2 و ملیتین را داشت. برای سلول‌های Caco-2، کمترین غلظت مهاری (IC50) در گروه زهر دنیزلی مشاهده شد که نتایج MTT و LDH به ترتیب 19/0 ± 42/12 میکروگرم در میلی لیتر و 61/0 ± 19/8 میکروگرم بر میلی لیتر بود. برای سلول‌های T98G، این مقادیر به ترتیب 40/0 ± 98/5 میکروگرم بر میلی لیتر و 17/0 ± 04/5 میکروگرم بر میلی لیتر بود. نتیجه‌گیری: یافته‌ها نشان می‌دهد که زهر زنبور عسل از استان‌های مختلف دارای سطوح متفاوتی از آپامین، فسفولیپاز A2 و ملیتین است. اثرات سمیت سلولی مشاهده شده بر روی رده‌های سلولی Caco-2 و T98G نشان می‌دهد که زهر زنبور عسل می‌تواند پتانسیل استفاده به عنوان یک عامل ضد سرطان را داشته باشد.

کلیدواژه‌ها

موضوعات


Altıntas, L and Bektas, N (2019). Apitherapy: 1. Bee venom. Uludag Bee J., 19: 82-95.
Arslan, P; Yurdakok Dikmen, B; Ozeren, SC and Kuzukıran, O (2021). In vitro effects of erythromycin and florfenicol on primary cell lines of Unio crassus and Cyprinus carpio. ESPR., 28: 48408-48416.
Aygun, G and Akbulak, C (2017). Evaluation of the organic livestock potential of Ardahan Province. Dumlupinar Univ. J. Soc. Sci., 53: 144-161.
Badria, F; Fathy, H; Fatehe, A; Elimam, D and Ghazy, M (2017). Evaluate the cytotoxic activity of honey, propolis, and bee venom from different localities in Egypt against liver, breast, and colorectal cancer. J. Apitherapy., 2: 1-4.
Baek, YH; Huh, JE; Lee, JD and Park, DS (2006). Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: mediation by Α2-Adrenoceptors. Brain Res., 1073: 305-310.
Bazi, A; Gholamin, M; Sisakht, M and Keramati, MR (2015). Bee venom induces unfolded protein response in A172 glioblastoma cell line. Biotec. Health Sci., 2: e27547.
Bovi, TS; Onarı, P; Santos, SAA; Justulin, LA and Orsi, RO (2017). Apitoxin harvest impairs hypopharyngeal gland structure in Apis mellifera honey bees. Apidologie, 48: 755-760.
Büyüköztürk, Ş (2009). Data analysis handbook for social sciences. 10th Edn., Ankara, Turkey, Pegem Akademi Publishing. (in Turkish)
Cakmak, I; Fuchs, S; Cakmak, SS; Koca, AO; Nentchev, P and Kandemir, I (2014). Morphometric analysis of honeybees distributed in Northern Turkey along the Black Sea coast. Uludag Bee J., 14: 59-68.
Caprazlı, T and Kekecoglu, M (2021). Factors affecting the composition and production amount of honey bee venom. Uludag Bee J., 21: 132-145.
El-Wahed, AAA; Khalifa, SAM; Sheikh, BY; Farag, MA; Saeed, KA; Larik, FA; Koca Calıskan, U; Alajmi, MF; Hassan, M; Wahabi, HA; Hegazy, MEF; Algethami, AF; Buttner, S and Hesham, R (2019). Bee venom composition: from chemistry to biological activity. Stud. Nat. Prod. Chem., 60: 459-484.
Fabiani, R (2020). Antitumoral properties of natural products. Molecules, 25: 650.
Frangieh, J; Salma, Y; Haddad, K; Mattei, C; Legros, C; Fajloun, Z and El Obeid, D (2019). First characterization of the venom from Apis mellifera syriaca, a honeybee from the Middle East region. Toxins, 11: 191.
Gajski, G; ČimboraZovko, T; Rak, S; Rožman, M; Osmak, M and Garaj Vrhovac, V (2014). Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines. J. Appl. Toxicol., 34: 1332-1341.
Gajski, G; Domijan, AM; Žegura, B; Štern, A; Gerić, M; Novak Jovanović, I; Vrhovac, I; Madunić, J; Breljak, D; Filipič, M and Garaj-Vrhovac, V (2016). Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon, 110: 56-67.
Gajski, G and Garaj-Vrhovac, V (2009). Radioprotective effects of honeybee venom (Apis mellifera) against 915-mhz microwave radiation-induced DNA damage in wistar rat lymphocytes: In vitro study. Int. J. toxicol., 28: 88-98.
Gajski, G and Garaj-Vrhovac, V (2011). Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: a multi-biomarker approach. Environ. Toxicol. Pharmacol., 32: 201-211.
Garaj-Vrhovac, V and Gajski, G (2009). Evaluation of the cytogenetic status of human lymphocytes after exposure to a high concentration of bee venom in vitro. Arh. Hig. Rada. Toksikol., 60: 27-34.
Haggar, FA and Boushey, RP (2009). Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg., 22: 191-197.
Huang, M; Lu, JJ and Ding, J (2021). Natural products in cancer therapy: past, present and future. Nat. Prod. Bioprospect., 11: 5-13.
Ip, SW; Wei, HC; Lin, JP; Kuo, HM; Liu, KC; Hsu, SC; Yang, JS; Dueyang, M; Chiu, TH; Han, SM and Chung, JG (2008). Bee venom induced cell cycle arrest and apoptosis in human cervical epidermoid carcinoma Ca Ski cells. Anticancer Res., 28: 833-842.
Kence, A (2006). Genetic diversity of honey bees in Turkey and the importance of its conservation. Uludag Bee J., 6: 25-32.
Lebel, AA; Kisembo, MV; Soucy, MFN; Hébert, MP and Boudreau, LH (2021). Molecular characterization of the anticancer properties associated with bee venom and its components in glioblastoma multiforme. Chem. Biol. Interact., 347: 109622.
Lee, G and Bae, H (2016). Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules, 21: 616.
Lee, HL; Park, MH; Son, DJ; Song, HS; Kim, JH; Ko, SC; Song, MJ; Lee, WH; Yoon, JH; Young, WH; Han, SB and Hong, JT (2015). Anti-cancer effect of snake venom toxin through down regulation of AP-1 mediated PRDX6 expression. Oncotarget, 6: 22139-22151.
Moon, DO; Park, SY; Heo, MS; Kim, KC; Park, C; Ko, WS; Choi, YH and Kim, GY (2006). Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int. Immunopharmacol., 6: 1796-1807.
Mosmann, T (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. JIM., 65: 55-63.
Oršolić, N (2012). Bee venom in cancer therapy. Cancer Metastasis Rev., 31: 173-194.
Oršolić, N; Šver, L; Verstovšek, S; Terzić, S and Bašić, I (2003). Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon, 41: 861-870.
Ozdemir, G; Ersoz, E and Dilek, NM (2021). Apitherapy and health. BSJ Health Sci., 4: 168-174.
Park, MH; Choi, MS; Kwak, DH; Oh, KW; Yoon, DY; Han, SB; Song, HS; Song, MJ and Hong, JT (2001). Anti-Cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of Nf-Κb. Prostate, 71: 801-812.
Ruttner, F; Pourasghar, D and Kauhausen, D (1985). The honeybees of Iran. 2. Apis mellifera meda Skorikow, the Persian honey bee. Apidologie. 16: 241-264. (in German)
Rybak-Chmielewska, H and Szczesna, T
(2004). HPLC study of chemical composition of honeybee (Apis mellifera L.) venom. JAS., 48: 103-109.
Samancı, T and Kekecoglu, M (2019). Comparison of commercial and anatolian bee venom in terms of chemical composition. Uludag Bee J., 19: 61-68.
Senel, E and Demir, E (2018). Bibliometric analysis of apitherapy in complementary medicine literature between 1980 and 2016. Complement. Ther. Clin. Pract., 31: 47-52.
Sevin, S; Kıvrak, I; Tutun, H; Uyar, R and Ayaz, F (2022). Apis mellifera anatoliaca venom exerted anti-inflammatory activity on LPS-stimulated mammalian macrophages by reducing the production of the inflammatory cytokines. Appl. Biochem. Biotechnol., 195: 3194-3205.
Sıralı, R (2017). Some important characteristics of Anatolian bee (Apis mellifera anatoliaca). Uludag Bee J., 17: 82-92.
Sjakste, N and Gajski, G (2023). A review on genotoxic and genoprotective effects of biologically active compounds of animal origin. Toxins, 15: 165.
Smith, DR; Slaymaker, A; Palmer, M and Kaftanoglu, O (1997). Turkish honey bees belong to the east Mediterranean mitochondrial lineage. Apidologie, 28: 269-274.
Sobral, F; Sampaıo, A; Falcão, S; Queıroz, MJR; Calhella, RC; Vılas-Boas, M and Ferreıra, IC (2016). Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in northeast portugal. FCT., 94: 172-177.
Son, DJ; Lee, JW; Lee, YH; Song, HS; Lee, CK and Hong, JT (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. ther., 115: 246-270.
Tanugur Samanc, AE and Kekecoglu, M (2021). An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. PloS One, 16: e0255161.
Zheng, J; Lee, HL; Ham, YW; Song, HS; Song, MJ and Hong, JT (2015). Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget, 6: 44437-44451.