Prevalence and antibiogram profiling of enterotoxigenic methicillin-resistant Staphylococcus aureus at bovine-human interface

Document Type : Full paper (Original article)

Authors

1 Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan

2 Ph.D. Student in Veterinary Medicine, Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan

3 MSc Student in Veterinary Medicine, Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan

10.22099/ijvr.2024.50719.7502

Abstract

Background: Staphylococcus aureus, a ubiquitous pathogen due to its key involvement in dairy animal mastitis, is the leading cause of food-borne diseases in humans by producing various enterotoxins. Aims: The present study reported the prevalence of significantly increased enterotoxigenic MRSA pathogens among bovines and dairy occupational workers, along with antibiotic-resistant patterns, using the in-vitro technique. Methods: A total of 384 bovine (n=192 cattle, n=192 buffalo) milk samples and 100 human nasal or skin swab samples were collected to find out the prevalence of S. aureus, MRSA, spa, and enterotoxin genes (seb, sec) by PCR. Also, a phylogenetic analysis was conducted to compare and analyze the prevalent enterotoxin seb gene sequences from bovines, workers, and other sources. Results: The present study revealed that out of 484 total samples, 49.79% of isolates were positive for S. aureus while 29.46% and 66.80% of S. aureus isolates were positive for MRSA, and spa genes among bovine and human samples collectively. The prevalence of enterotoxigenic S. aureus was found to be 16.18% in bovine and human staphylococcal isolates. Additionally, the enterotoxigenic strains exhibited resistance to commonly used antibiotics. Conclusion: The present study shows that enterotoxigenic MRSA is prevalent in bovines and dairy occupational workers of study districts, Pakistan, and study isolates revealed a varying level of resistance to different antibiotics. The various virulence factors along with the antibiotic resistance makes MRSA a potential threat at animal-human interface, highlighting the need for further research.

Keywords

Main Subjects


Abdeen, EE; Mousa, WS; Abdel-Tawab, AA; El-Faramawy, R and Abo-Shama, UH (2021). Phenotypic, genotypic and antibiogram among Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J., 41: 289-293. http://dx.doi.org/10.29261/pakvetj/2021.008.
Ahmed, A; Ijaz, M; Khan, JA and Anjum, AA (2022). Molecular characterization and therapeutic insights into biofilm positive Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J., 42: 584-590.
Algammal, A; Enany, ME; El-Tarabili, RM; Ghobashy, MO and Helmy, YA (2020). Prevalence, antimicrobial resistance profiles, virulence and enterotoxins-determinant genes of MRSA isolated from subclinical bovine mastitis in Egypt. J. Pathog., 9: 1-11. https://doi.org/10.3390/ pathogens9050362.
Ali, AA; Basha, OA and Ibrahim, MS (2017). Incidence of methicillin-resistant Staphylococcus aureus isolation from sheep and goat. Alex. J. Vet. Sci., 54: 142-148.
Alian, F; Rahimi, E; Shakerian, A; Momtaz, H; Riahi, M and Momeni, M (2012). Antimicrobial resistance of Staphylococcus aureus isolated from bovine, sheep and goat raw milk. Glob. Vet., 8: 111-114.
Almuzaini, AM (2024). A review on the use of nanomaterials for control and prevention of Clostridium perfringens: An organism of zoonotic importance. Pak. Vet. J. 44: 563-570.
Altaf, M; Ijaz, M; Iqbal, MK; Rehman, A and Avais, M (2020). Molecular characterization of methicillin resistant Staphylococcus aureus (MRSA) and associated risk factors with the occurrence of goat mastitis. Pak. Vet. J., 40: 1-6. ttp://dx.doi.org/10.29261/pakvetj/2019.079.
Aqib, AI; Ijaz, M; Hussain, R; Durrani, AZ; Anjum, AA; Rizwan, A; Sana, S; Farooqi, SH and Hussain, K (2017). Identification of coagulase gene in Staphylococcus aureus isolates recovered from subclinical mastitis in camels. Pak. Vet. J., 37: 160-164.
Aragon-Alegro, LC; Konta, EM; Suzuki, K; Silva, MG; Júnior, AF and Rall, R (2007). Occurrence of coagulase-positive Staphylococcus in various food products commercialized in Botucatu, SP, Brazil and detection of toxins from food and isolated strains. Food Control. 18: 630-634. https://doi.org/10.1016/j.foodcont.2006.02.010.
Barkema, HW; Schukken, YH and Zadoks, RN (2006). Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. JDS. 89: 1877-1895. https://doi.org/10.3168/jds.S0022-0302(06)72256-1.
Benkerroum, N (2018). Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Crit. Rev. Food Sci. Nutr., 58: 1943-1970.
Boerema, JA; Clemens, R and Brightwell, G (2006). Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of Staphylococcus aureus. Int. J. Food Microbiol., 107: 192-201. https://doi.org/ 10.1016/j.ijfoodmicro.2005.07.008.
Bramley, AJ; Cullor, LS; Erskine, RJ; Fox, LK and Harmon, RS (1996). Current concepts of bovine mastitis. 4th Edn., NMC, Madison, WI.
Bryan, FL (1983). Epidemiology of milk-borne diseases. JFP. 46: 637-649. https://doi.org/10.4315/0362-028X-46.7.637.
CLSI (2019). Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute. 35: 16-38.
Dallal, MM; Salehipour, Z and Abdi, M (2024). Methicillin-resistant Staphylococcus aureus strains isolated from foodhandlers, community nasal carriers and bovine mastitis. Rev. Res. Med. Microbiol., 35: 127-134.
Dinges, MM; Orwin, PM and Schlievert, PM (2000). Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev., 13: 16-34. https://doi.org/10.1128/cmr.13.1.16.
Dunman, PÁ; Murphy, E; Haney, S; Palacios, D and Tucker-Kellogg, G (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol., 183: 7341-7353. https://doi.org/10.1128/jb.183.24.7341-7353.2001.
Durrani, RH; Sheikh, AA; Humza, M; Ashraf, S; Kokab, A; Mahmood, T and Khan, MU (2024). Evaluation of Antibiotic Resistance Profile and Multiple Antibiotic Resistance Index in Avian Adapted Salmonella enterica serovar Gallinarum Isolates. Pak. Vet. J., http://dx.doi.org/ 10.29261/pakvetj/2024.253.
El-Ashker, M; Gwida, M; Monecke, S; El-Gohary, F and Ehricht, R (2020). Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt. Vet. Microbiol., 240: 1-5. https://doi.org/10.1016/j.vetmic.2019.108535.
Ewida, RM and Al-Hosary, AA (2020). Prevalence of enterotoxins and other virulence genes of Staphylococcus aureus caused subclinical mastitis in dairy cows. Vet. World. 13: 1193-1198. https://doi.org/10.14202%2 Fvetworld.2020.1193-1198.
Ferens, WA; Davis, WC; Hamilton, MJ; Park, YH and Deobald, CF (1998). Activation of bovine lymphocyte subpopulations by staphylococcal enterotoxin C. Infect. Immun., 66: 573-580. https://doi.org/10.1128/iai.66.2.573-580.1998.
Gao, J and Stewart, GC (2004). Regulatory elements of the Staphylococcus aureus protein A (Spa) promoter. J. bacteriol., 186: 3738-3748.
Gilmour, A and Harvey, J (1990). Staphylococci in milk and milk products. Soc. Appl. Bacteriol. Symp. Ser., 19: 147S-166S.
Girmay, W; Gugsa, G; Taddele, H; Tsegaye, Y and Awol, N (2020). Isolation and identification of methicillin-resistant Staphylococcus aureus (MRSA) from milk in shire dairy farms, Tigray, Ethiopia. Vet. Med. Int., 2020: 1-7. https://doi.org/10.1155/2020/8833973.
Guimarães, FF; Manzi, MP; Joaquim, SF; Richini-Pereira, VB and Langoni, H (2017). Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. JDS., 100: 726-730. https://doi.org/10.3168/jds.2016-11700.
Ghauri, HN; Ijaz, M; Ahmed, A; Muhammad, Naveed; Nawab, Y, Javed, MU and Ghaffar, A (2021). Molecular investigation and phylogenetic analysis of anaplasmosis in dogs. J. Parasitol., 107: 295-303.
Hannan, A; Du, X; Maqbool, B and Khan, A (2024). Nanoparticles as potent allies in combating antibiotic resistance: A promising frontier in antimicrobial therapy. Pak. Vet. J., 44: 557-567.
Ishaq, M; Ijaz, M; Lateef, M; Ahmed, A; Muzammil, I; Javed, MU; Raza, A and Ghumman, NZ (2022). Molecular characterization of Anaplasma capra infecting captive mouflon (Ovis gmelini) and domestic sheep (Ovis aries) of Pakistan. Small Rumin. Res., 216: 1-8.
Javed, MU; Ijaz, M; Ahmed, A; Rasheed, H; Sabir, MJ and Jabir, AA (2024). Molecular dynamics and antimicrobial resistance pattern of β-lactam resistant coagulase positive Staphylococcus aureus isolated from goat mastitis. Pak. Vet. J., 44: 423-429.
Javed, MU; Ijaz, M; Durrani, AZ and Ali, MM (2023). On-farm epidemiology, virulence profiling, and molecular characterization of methicillin-resistant Staphylococcus aureus at goat farms. Microb. Pathog., 185: 1-12.
Javed, MU; Ijaz, M; Durrani, AZ and Ali, MM (2024). Molecular insights into antimicrobial resistant Staphylococcus aureus strains: A potential zoonosis of goat origin. Microb. Pathog., 196: 106961.
Kiš, M; Kolačko, I and Zdolec, N (2021). Unprocessed milk as a source of multidrug-resistant Staphylococcus aureus strains. Acta Veterinaria Brno., 90: 357-363.
Li, X; Zhu, X and Xue, Y (2023). Drug resistance and genetic relatedness of Escherichia coli from Mink in Northeast China. Pak. Vet. J., 43: 824-827.
Liu, J; Zhang, X; Niu, J; Han, Z; Bi, C; Mehmood, K; Farraj, DAA; Alzaidi, I; Iqbal, R and Qin, J (2023). Complete genome of multi-drug resistant Staphylococcus aureus in bovine mastitic milk in Anhui, China. Pak. Vet. J., 43: 456-462.
Loncarevic, S; Jørgensen, HJ; Løvseth, A; Mathisen, T and Rørvik, LM (2005). Diversity of Staphylococcus aureus enterotoxin types within single samples of raw milk and raw milk products. J. Appl. Microbiol., 98: 344-350. https://doi.org/10.1111/j.1365-2672.2004.02467.
Louie, L; Matsumura, SO; Choi, E; Louie, M and Simor, AE (2000). Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J. Clin. Microbiol., 38: 2170-3. https://doi.org/10.1128/jcm.38.6. 2170-2173.2000.
Monistero, V; Graber, HU; Pollera, C; Cremonesi, P and Castiglioni, B (2018). Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins. 10: 1-22. https://doi.org/10.3390/toxins10060247.
Muhammad, G; Naureen, A; Asi, MN and Saqib, M (2010). Evaluation of a 3% surf solution (surf field mastitis test) for the diagnosis of subclinical bovine and bubaline mastitis. JAHP., 42: 457-464. https://doi.org/10.1007/s11250-009-9443-3.
Muzammil, I; Ijaz, M; Saleem, MH and Ali, MM (2022). Drug repurposing strategy: An emerging approach to identify potential therapeutics for treatment of bovine mastitis. Microb. Pathog., 171: 105691.
Nazari, R; Godarzi, H; Baghi, FR and Moeinrad, M (2014). Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk. Iran. J. Vet. Res., 15: 409-
Obaidat, MM; Salman, AEB and Roess, AA (2018). High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Trop. Anim. Health Prod., 50: 405-412.
Ortega, E; Abriouel, H; Lucas, R and Gálvez, A (2010). Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins. 2: 2117-2131.
Pamuk, S; Yildirim, Y; Seker, E; Gurler, Z and Kara, R (2012). A survey of the occurrence and properties of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus intermedius in water buffalo milk and dairy products in Turkey. Int. J. Dairy Technol., 65: 416-422. https://doi.org/10.1111/j.1471-0307.2012.00832.x.
Peles, F; Wagner, M; Varga, L; Hein, I and Rieck, P (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int. J. Food Microbiol., 118: 186-193. https://doi.org/10.1016/j.ijfoodmicro.2007.07. 010.
Qureshi, MH; Azam, F; Shafique, M; Aslam, B; Farooq, M; Rafique, MK; Meraj, MT and Ahmed, I (2024). A one health perspective of pet birds bacterial zoonosis and prevention. Pak. Vet. J. 44: 1-8.
Rasheed, H; Ijaz, M; Muzammil, I; Ahmed, A; Anwaar, F; Javed, MU; Ghumman, NZ and Raza, A (2023). Molecular evidence of β-lactam resistant Staphylococcus aureus in equids with respiratory tract infections: Frequency and resistance modulation strategy. Acta Trop., 245: 1-9. https://doi.org/10.1016/j.actatropica.2023.106967.
Roy, MC; Chowdhury, T; Hossain, MT; Hasan, MM; Zahran, E; Rahman, MM; Zinnah, KM; Rahman, MM and Hossain, FM (2024). Zoonotic linkage and environmental contamination of methicillin-resistant Staphylococcus aureus (MRSA) in dairy farms: A one health perspective. One Health. 18: 1-10.
Sabir, MJ; Ijaz, M; Ahmed, A; Rasheed, H; Javed, MU and Anwaar, F (2024). First report on genotypic estimation of MRSA load in udder of nomadic sheep flocks affected with subclinical mastitis in Pakistan. Res. Vet. Sci., 66: 1-7. https://doi.org/10.1016/j.rvsc.2023.105107.
Saka, E and Terzi Gulel, G (2018). Detection of enterotoxin genes and methicillin-resistance in Staphylococcus aureus isolated from water buffalo milk and dairy products. J. Food Sci., 83: 1716-1722. https://doi.org/10.1111/1750-3841.14172.
Sharma, D; Sharma, PK and Malik, A (2011). Prevalence and antimicrobial susceptibility of drug resistant Staphylococcus aureus in raw milk of dairy cattle. Int. Res. J. Microbiol., 2: 466-470. https://doi.org/10.48550/arXiv. 2307.12008.
Silva, WP; Destro, MT; Landgraf, M and Franco, BD
(2000). Biochemical characteristics of typical and atypical Staphylococcus aureus in mastitic milk and environmental samples of Brazilian dairy farms. Braz. J. Microbiol., 31: 103-106. https://doi.org/10.1590/S1517-838220000002000 08.
Srinivasan, V; Sawant, AA; Gillespie, BE; Headrick, SJ and Ceasaris, L (2006). Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathog. Dis., 3: 274-283. https://doi.org/10.1089/fpd.2006. 3.274.
Turutoglu, H; Hasoksuz, M; Ozturk, D; Yildirim, M and Sagnak, S (2009). Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Vet. Res. Commun., 33: 945-956.
UH, AS (2014). Prevalence and antimicrobial susceptibility of Staphylococcus aureus isolated from cattle, buffalo, sheep and goat’s raws milk in Sohag Governorate, Egypt. Assiut Vet. Med. J., 60: 63-72. https://doi.org/10.21608/avmj. 2014.170753.
Vintov, J; Aarestrup, FM; Zinn, CE and Olsen, JE (2003). Association between phage types and antimicrobial resistance among bovine Staphylococcus aureus from 10 countries. Vet. Microbiol., 95: 133-147. https://doi.org/10. 1016/S0378-1135(03)00156-1.
Votintseva, AA; Fung, R; Miller, RR; Knox, K; Godwin, H; Wyllie, DH; Bowden, R; Crook, DW and Walker, AS (2014). Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol., 14: 1-11.
Weese, JS (2012). Staphylococcal control in the veterinary hospital. Vet. Dermatol., 23: 292-e58. https://doi.org/10. 1111/j.1365-3164.2012.01048.x.
Weese, JS; Rousseau, J; Traub-Dargatz, JL; Willey, BM and McGeer, AJ (2005). Community-associated methicillin-resistant Staphylococcus aureus in horses and humans who work with horses. JAVMA. 226: 580-583. https://doi.org/10.2460/javma.2005.226.580.
Wu, S; Huang, J; Zhang, F; Wu, Q; Zhang, J; Pang, R; Zeng, H; Yang, X; Chen, M; Wang, J and Dai, J (2019). Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol., 10: 1-13
Yang, F; Zhang, S; Shang, X; Li, H and Zhang, H (2020). Detection and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. JDS. 103: 840-845. https://doi.org/10.3168/jds.2019-16317.
Yunita, MN; Effendi, MH; Rahmaniar, RP; Arifah, S and Yanestria, SM (2020). Identification of spa gene for strain typing of methicillin resistant Staphylococcus aureus (MRSA) isolated from nasal swab of dogs. Biochem. Cell. Arch., 20: 2999-3004. https://doi.org/10.35124/bca.2020. 20.
Zhu, L; Lai, Y; Li, X; Ma, H; Gong, F; Sun, X; Cao, A; Jiang, T; Han, Y and Pan, Z (2024). Molecular and epidemiological characterization of Staphylococcus aureus causing bovine mastitis in China. Microb. Pathog., 191: 1-9. https://doi.org/10.1016/j.micpath.2024.106640.