Abdeen, EE; Mousa, WS; Abdel-Tawab, AA; El-Faramawy, R and Abo-Shama, UH (2021). Phenotypic, genotypic and antibiogram among
Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J., 41: 289-293.
http://dx.doi.org/10.29261/pakvetj/2021.008.
Ahmed, A; Ijaz, M; Khan, JA and Anjum, AA (2022). Molecular characterization and therapeutic insights into biofilm positive Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J., 42: 584-590.
Algammal, A; Enany, ME; El-Tarabili, RM; Ghobashy, MO and Helmy, YA (2020). Prevalence, antimicrobial resistance profiles, virulence and enterotoxins-determinant genes of MRSA isolated from subclinical bovine mastitis in Egypt. J. Pathog., 9: 1-11.
https://doi.org/10.3390/ pathogens9050362.
Ali, AA; Basha, OA and Ibrahim, MS (2017). Incidence of methicillin-resistant Staphylococcus aureus isolation from sheep and goat. Alex. J. Vet. Sci., 54: 142-148.
Alian, F; Rahimi, E; Shakerian, A; Momtaz, H; Riahi, M and Momeni, M (2012). Antimicrobial resistance of Staphylococcus aureus isolated from bovine, sheep and goat raw milk. Glob. Vet., 8: 111-114.
Almuzaini, AM (2024). A review on the use of nanomaterials for control and prevention of Clostridium perfringens: An organism of zoonotic importance. Pak. Vet. J. 44: 563-570.
Altaf, M; Ijaz, M; Iqbal, MK; Rehman, A and Avais, M (2020). Molecular characterization of methicillin resistant Staphylococcus aureus (MRSA) and associated risk factors with the occurrence of goat mastitis. Pak. Vet. J., 40: 1-6. ttp://dx.doi.org/10.29261/pakvetj/2019.079.
Aqib, AI; Ijaz, M; Hussain, R; Durrani, AZ; Anjum, AA; Rizwan, A; Sana, S; Farooqi, SH and Hussain, K (2017). Identification of coagulase gene in Staphylococcus aureus isolates recovered from subclinical mastitis in camels. Pak. Vet. J., 37: 160-164.
Aragon-Alegro, LC; Konta, EM; Suzuki, K; Silva, MG; Júnior, AF and Rall, R (2007). Occurrence of coagulase-positive
Staphylococcus in various food products commercialized in Botucatu, SP, Brazil and detection of toxins from food and isolated strains. Food Control. 18: 630-634.
https://doi.org/10.1016/j.foodcont.2006.02.010.
Barkema, HW; Schukken, YH and Zadoks, RN (2006). Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. JDS. 89: 1877-1895. https://doi.org/10.3168/jds.S0022-0302(06)72256-1.
Benkerroum, N (2018). Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Crit. Rev. Food Sci. Nutr., 58: 1943-1970.
Boerema, JA; Clemens, R and Brightwell, G (2006). Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of Staphylococcus aureus. Int. J. Food Microbiol., 107: 192-201. https://doi.org/ 10.1016/j.ijfoodmicro.2005.07.008.
Bramley, AJ; Cullor, LS; Erskine, RJ; Fox, LK and Harmon, RS (1996). Current concepts of bovine mastitis. 4th Edn., NMC, Madison, WI.
CLSI (2019). Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute. 35: 16-38.
Dallal, MM; Salehipour, Z and Abdi, M (2024). Methicillin-resistant Staphylococcus aureus strains isolated from foodhandlers, community nasal carriers and bovine mastitis. Rev. Res. Med. Microbiol., 35: 127-134.
Dinges, MM; Orwin, PM and Schlievert, PM (2000). Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev., 13: 16-34. https://doi.org/10.1128/cmr.13.1.16.
Dunman, PÁ; Murphy, E; Haney, S; Palacios, D and Tucker-Kellogg, G (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol., 183: 7341-7353. https://doi.org/10.1128/jb.183.24.7341-7353.2001.
Durrani, RH; Sheikh, AA; Humza, M; Ashraf, S; Kokab, A; Mahmood, T and Khan, MU (2024). Evaluation of Antibiotic Resistance Profile and Multiple Antibiotic Resistance Index in Avian Adapted Salmonella enterica serovar Gallinarum Isolates. Pak. Vet. J., http://dx.doi.org/ 10.29261/pakvetj/2024.253.
El-Ashker, M; Gwida, M; Monecke, S; El-Gohary, F and Ehricht, R (2020). Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt. Vet. Microbiol., 240: 1-5. https://doi.org/10.1016/j.vetmic.2019.108535.
Ewida, RM and Al-Hosary, AA (2020). Prevalence of enterotoxins and other virulence genes of Staphylococcus aureus caused subclinical mastitis in dairy cows. Vet. World. 13: 1193-1198. https://doi.org/10.14202%2 Fvetworld.2020.1193-1198.
Ferens, WA; Davis, WC; Hamilton, MJ; Park, YH and Deobald, CF (1998). Activation of bovine lymphocyte subpopulations by staphylococcal enterotoxin C. Infect. Immun., 66: 573-580. https://doi.org/10.1128/iai.66.2.573-580.1998.
Gao, J and Stewart, GC (2004). Regulatory elements of the Staphylococcus aureus protein A (Spa) promoter. J. bacteriol., 186: 3738-3748.
Gilmour, A and Harvey, J (1990). Staphylococci in milk and milk products. Soc. Appl. Bacteriol. Symp. Ser., 19: 147S-166S.
Girmay, W; Gugsa, G; Taddele, H; Tsegaye, Y and Awol, N (2020). Isolation and identification of methicillin-resistant Staphylococcus aureus (MRSA) from milk in shire dairy farms, Tigray, Ethiopia. Vet. Med. Int., 2020: 1-7. https://doi.org/10.1155/2020/8833973.
Guimarães, FF; Manzi, MP; Joaquim, SF; Richini-Pereira, VB and Langoni, H (2017). Outbreak of methicillin-resistant
Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. JDS., 100: 726-730.
https://doi.org/10.3168/jds.2016-11700.
Ghauri, HN; Ijaz, M; Ahmed, A; Muhammad, Naveed; Nawab, Y, Javed, MU and Ghaffar, A (2021). Molecular investigation and phylogenetic analysis of anaplasmosis in dogs. J. Parasitol., 107: 295-303.
Hannan, A; Du, X; Maqbool, B and Khan, A (2024). Nanoparticles as potent allies in combating antibiotic resistance: A promising frontier in antimicrobial therapy. Pak. Vet. J., 44: 557-567.
Ishaq, M; Ijaz, M; Lateef, M; Ahmed, A; Muzammil, I; Javed, MU; Raza, A and Ghumman, NZ (2022). Molecular characterization of Anaplasma capra infecting captive mouflon (Ovis gmelini) and domestic sheep (Ovis aries) of Pakistan. Small Rumin. Res., 216: 1-8.
Javed, MU; Ijaz, M; Ahmed, A; Rasheed, H; Sabir, MJ and Jabir, AA (2024). Molecular dynamics and antimicrobial resistance pattern of β-lactam resistant coagulase positive Staphylococcus aureus isolated from goat mastitis. Pak. Vet. J., 44: 423-429.
Javed, MU; Ijaz, M; Durrani, AZ and Ali, MM (2023). On-farm epidemiology, virulence profiling, and molecular characterization of methicillin-resistant Staphylococcus aureus at goat farms. Microb. Pathog., 185: 1-12.
Javed, MU; Ijaz, M; Durrani, AZ and Ali, MM (2024). Molecular insights into antimicrobial resistant Staphylococcus aureus strains: A potential zoonosis of goat origin. Microb. Pathog., 196: 106961.
Kiš, M; Kolačko, I and Zdolec, N (2021). Unprocessed milk as a source of multidrug-resistant Staphylococcus aureus strains. Acta Veterinaria Brno., 90: 357-363.
Li, X; Zhu, X and Xue, Y (2023). Drug resistance and genetic relatedness of Escherichia coli from Mink in Northeast China. Pak. Vet. J., 43: 824-827.
Liu, J; Zhang, X; Niu, J; Han, Z; Bi, C; Mehmood, K; Farraj, DAA; Alzaidi, I; Iqbal, R and Qin, J (2023). Complete genome of multi-drug resistant Staphylococcus aureus in bovine mastitic milk in Anhui, China. Pak. Vet. J., 43: 456-462.
Loncarevic, S; Jørgensen, HJ; Løvseth, A; Mathisen, T and Rørvik, LM (2005). Diversity of Staphylococcus aureus enterotoxin types within single samples of raw milk and raw milk products. J. Appl. Microbiol., 98: 344-350. https://doi.org/10.1111/j.1365-2672.2004.02467.
Louie, L; Matsumura, SO; Choi, E; Louie, M and Simor, AE (2000). Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J. Clin. Microbiol., 38: 2170-3. https://doi.org/10.1128/jcm.38.6. 2170-2173.2000.
Monistero, V; Graber, HU; Pollera, C; Cremonesi, P and Castiglioni, B (2018). Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins. 10: 1-22. https://doi.org/10.3390/toxins10060247.
Muhammad, G; Naureen, A; Asi, MN and Saqib, M (2010). Evaluation of a 3% surf solution (surf field mastitis test) for the diagnosis of subclinical bovine and bubaline mastitis. JAHP., 42: 457-464. https://doi.org/10.1007/s11250-009-9443-3.
Muzammil, I; Ijaz, M; Saleem, MH and Ali, MM (2022). Drug repurposing strategy: An emerging approach to identify potential therapeutics for treatment of bovine mastitis. Microb. Pathog., 171: 105691.
Nazari, R; Godarzi, H; Baghi, FR and Moeinrad, M (2014). Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk. Iran. J. Vet. Res., 15: 409-
Obaidat, MM; Salman, AEB and Roess, AA (2018). High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Trop. Anim. Health Prod., 50: 405-412.
Ortega, E; Abriouel, H; Lucas, R and Gálvez, A (2010). Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins. 2: 2117-2131.
Pamuk, S; Yildirim, Y; Seker, E; Gurler, Z and Kara, R (2012). A survey of the occurrence and properties of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus intermedius in water buffalo milk and dairy products in Turkey. Int. J. Dairy Technol., 65: 416-422. https://doi.org/10.1111/j.1471-0307.2012.00832.x.
Peles, F; Wagner, M; Varga, L; Hein, I and Rieck, P (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int. J. Food Microbiol., 118: 186-193. https://doi.org/10.1016/j.ijfoodmicro.2007.07. 010.
Qureshi, MH; Azam, F; Shafique, M; Aslam, B; Farooq, M; Rafique, MK; Meraj, MT and Ahmed, I (2024). A one health perspective of pet birds bacterial zoonosis and prevention. Pak. Vet. J. 44: 1-8.
Rasheed, H; Ijaz, M; Muzammil, I; Ahmed, A; Anwaar, F; Javed, MU; Ghumman, NZ and Raza, A (2023). Molecular evidence of β-lactam resistant Staphylococcus aureus in equids with respiratory tract infections: Frequency and resistance modulation strategy. Acta Trop., 245: 1-9. https://doi.org/10.1016/j.actatropica.2023.106967.
Roy, MC; Chowdhury, T; Hossain, MT; Hasan, MM; Zahran, E; Rahman, MM; Zinnah, KM; Rahman, MM and Hossain, FM (2024). Zoonotic linkage and environmental contamination of methicillin-resistant Staphylococcus aureus (MRSA) in dairy farms: A one health perspective. One Health. 18: 1-10.
Sabir, MJ; Ijaz, M; Ahmed, A; Rasheed, H; Javed, MU and Anwaar, F (2024). First report on genotypic estimation of MRSA load in udder of nomadic sheep flocks affected with subclinical mastitis in Pakistan. Res. Vet. Sci., 66: 1-7. https://doi.org/10.1016/j.rvsc.2023.105107.
Saka, E and Terzi Gulel, G (2018). Detection of enterotoxin genes and methicillin-resistance in Staphylococcus aureus isolated from water buffalo milk and dairy products. J. Food Sci., 83: 1716-1722. https://doi.org/10.1111/1750-3841.14172.
Sharma, D; Sharma, PK and Malik, A (2011). Prevalence and antimicrobial susceptibility of drug resistant Staphylococcus aureus in raw milk of dairy cattle. Int. Res. J. Microbiol., 2: 466-470. https://doi.org/10.48550/arXiv. 2307.12008.
Silva, WP; Destro, MT; Landgraf, M and Franco, BD
(2000). Biochemical characteristics of typical and atypical Staphylococcus aureus in mastitic milk and environmental samples of Brazilian dairy farms. Braz. J. Microbiol., 31: 103-106. https://doi.org/10.1590/S1517-838220000002000 08.
Srinivasan, V; Sawant, AA; Gillespie, BE; Headrick, SJ and Ceasaris, L (2006). Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathog. Dis., 3: 274-283. https://doi.org/10.1089/fpd.2006. 3.274.
Turutoglu, H; Hasoksuz, M; Ozturk, D; Yildirim, M and Sagnak, S (2009). Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Vet. Res. Commun., 33: 945-956.
UH, AS (2014). Prevalence and antimicrobial susceptibility of Staphylococcus aureus isolated from cattle, buffalo, sheep and goat’s raws milk in Sohag Governorate, Egypt. Assiut Vet. Med. J., 60: 63-72. https://doi.org/10.21608/avmj. 2014.170753.
Vintov, J; Aarestrup, FM; Zinn, CE and Olsen, JE (2003). Association between phage types and antimicrobial resistance among bovine Staphylococcus aureus from 10 countries. Vet. Microbiol., 95: 133-147. https://doi.org/10. 1016/S0378-1135(03)00156-1.
Votintseva, AA; Fung, R; Miller, RR; Knox, K; Godwin, H; Wyllie, DH; Bowden, R; Crook, DW and Walker, AS (2014). Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol., 14: 1-11.
Weese, JS (2012). Staphylococcal control in the veterinary hospital. Vet. Dermatol., 23: 292-e58. https://doi.org/10. 1111/j.1365-3164.2012.01048.x.
Weese, JS; Rousseau, J; Traub-Dargatz, JL; Willey, BM and McGeer, AJ (2005). Community-associated methicillin-resistant Staphylococcus aureus in horses and humans who work with horses. JAVMA. 226: 580-583. https://doi.org/10.2460/javma.2005.226.580.
Wu, S; Huang, J; Zhang, F; Wu, Q; Zhang, J; Pang, R; Zeng, H; Yang, X; Chen, M; Wang, J and Dai, J (2019). Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol., 10: 1-13
Yang, F; Zhang, S; Shang, X; Li, H and Zhang, H (2020). Detection and molecular characterization of methicillin-resistant
Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. JDS. 103: 840-845.
https://doi.org/10.3168/jds.2019-16317.
Yunita, MN; Effendi, MH; Rahmaniar, RP; Arifah, S and Yanestria, SM (2020). Identification of spa gene for strain typing of methicillin resistant
Staphylococcus aureus (MRSA) isolated from nasal swab of dogs. Biochem. Cell. Arch., 20: 2999-3004.
https://doi.org/10.35124/bca.2020. 20.
Zhu, L; Lai, Y; Li, X; Ma, H; Gong, F; Sun, X; Cao, A; Jiang, T; Han, Y and Pan, Z (2024). Molecular and epidemiological characterization of Staphylococcus aureus causing bovine mastitis in China. Microb. Pathog., 191: 1-9. https://doi.org/10.1016/j.micpath.2024.106640.