Abasht, B; Kaiser, MG; Van der Poel, J and Lamont, SJ (2009). Genetic lines differ in toll-like receptor gene expression in spleens of chicks inoculated with Salmonella enterica serovar Enteritidis. Poult. Sci., 88: 744-749.
Abu-Hadid, M; Wilkes, JD; Elakawi, Z; Pendyala, L and Perez, RP (1997). Relationship between heat shock protein 60 (HSP60) mRNA expression and resistance to platinum analogues in human ovarian and bladder carcinoma cell lines. Cancer Lett., 119: 63-70.
Asea, AA and Kaur, P (2019). Heat shock protein 60 in human diseases and disorders. 1st Edn., Vol. 18, Switzerland, Springer Nature. PP: 135-143.
Badowska-Kozakiewicz, AM and Malicka, E (2012). Immunohistochemical evaluation of expression of heat shock proteins HSP70 and HSP90 in mammary gland neoplasms in bitches. Pol. J. Vet. Sci., 15: 35-39.
Bajramović, JJ; Geutskens, SB; Bsibsi, M; Boot, M; Hassankhan, R; Verhulst, KC and van Noort, JM (2000). The stress kit: a new method based on competitive reverse transcriptase-polymerase chain reaction to quantify the expression of human αB-crystallin, Hsp27, and Hsp60. Cell Stress Chap., 5: 30-36.
Bini, L; Magi, B; Marzocchi, B; Arcuri, F; Tripodi, S; Cintorino, M; Sanchez, JC; Frutiger, S; Hughes, G; Pallini, V and Hochstrasser, DF (1997). Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis. 18: 2832-2841.
Birdi, R; Kumar, BVS; Gupta, K; Kashyap, N and Kumar, A (2019). Circulating level of heat shock protein 27 is elevated in dogs with mammary tumors. 3 Biotech., 9: 1-9.
Bodoor, K; Abu-Sheikha, A; Matalka, I; Alzou’bi, H; Batiha, O; Abu-Awad, A; Jalboush, SA; Fayyad, LM; Qadiri, E; Jarun, Y and Albatayneh, K (2018). Immunohistochemical analysis of heat shock proteins in triple negative breast cancer: HSP60 expression is a marker of poor prognosis. Eur. J. Gynaecol. Oncol., 39: 926-934.
Bukau, B and Horwich, AL (1998). The Hsp70 and Hsp60 chaperone machines. Cell. 92: 351-366.
Calderwood, SK (2010). Heat shock proteins in breast cancer progression-a suitable case for treatment? Int. J. Hyperther., 26: 681-685.
Calderwood, SK and Gong, J (2016). Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem. Sci., 41: 311-323.
Campanella, C; Rappa, F; Sciumè, C; Marino Gammazza, A; Barone, R; Bucchieri, F; David, S; Curcurù, G; Caruso Bavisotto, C; Pitruzzella, A and Geraci, G (2015). Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer. 121: 3230-3239.
Cappello, F; Conway de Macario, E; Marasà, L; Zummo, G and Macario, AJ (2008). Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther., 7: 801-809.
Castle, PE; Ashfaq, R; Ansari, F and Muller, CY (2005). Immunohistochemical evaluation of heat shock proteins in normal and preinvasive lesions of the cervix. Cancer Lett., 229: 245-252.
Desmetz, C; Bibeau, F; Boissiere, F; Bellet, V; Rouanet, P; Maudelonde, T; Mangé, A and Solassol, J (2008). Proteomics-based identification of HSP60 as a tumor-associated antigen in early stage breast cancer and ductal carcinoma in situ. J. Prot. Res., 7: 3830-3837.
Goldschmidt, M; Peña, L; Rasotto, R and Zappulli, V (2011). Classification and grading of canine mammary tumors. Vet. Pathol., 48: 117-131.
Goldschmidt, M; Peña, L and Zappulli, V (2016). Tumors of the mammary gland. Tumors Dom. Anim., 15: 723-765.
Hansen, JJ; Bross, P; Westergaard, M; Nielsen, M; Eiberg, H; Børglum, AD; Mogensen, J; Kristiansen, K; Bolund, L and Gregersen, N (2003). Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Human Genet., 112: 71-77.
Hu, X; Li, H; Ip, TK; Cheung, YF; Koohi-Moghadam, M; Wang, H; Yang, X; Tritton, DN; Wang, Y; Wang, R; Ng, KM; Naranmandura, H; Tse, EW and Sun, H (2021). Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin. Chem. Sci., 12: 10893-10900.
Jindal, S; Dudani, AK; Singh, BHAG; Harley, CB and Gupta, RS (1989). Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol. Cell Biol., 9: 2279-2283.
Johansson, B; Pourian, MR; Chuan, YC; Byman, I; Bergh, A; Pang, ST; Norstedt, G; Bergman, T and Pousette, Å (2006). Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heatshock protein 60 as a marker for prostate malignancy. Prostate. 66: 1235-1244.
Karayannopoulou, M; Kaldrymidou, E; Constantinidis, TC and Dessiris, A (2005). Histological grading and prognosis in dogs with mammary carcinomas: application of a human grading method. J. Comp. Pathol., 133: 246-252.
Kumar, BVS; Bhardwaj, R; Mahajan, K; Kashyap, N; Kumar, A and Verma, R (2018). The overexpression of Hsp90B1 is associated with tumorigenesis of canine mammary glands. Mol. Cell Biochem., 440: 23-31.
Kumar, BVS; Gopal, PK; Gurao, A and Verma, R (2020). Binary role of heat shock proteins in cancer immunotherapy: A detailed perspective. In: Asea, AAA and Kaur, P (Eds.), Heat shock proteins in inflammatory diseases. Heat shock proteins. 1st Edn,, Vol. 22, Springer, Cham. PP: 387-405. https://doi.org/10.1007/7515_2020_ 34.
Laemmli, UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
Li, DQ; Wang, L; Fei, F; Hou, YF; Luo, JM; Zeng, R; Wu, J; Lu, JS; Di, GH; Ou, ZL and Xia, QC (2006). Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics. 6: 3352-3368.
Lindquist, S (1986). The heat-shock response. Ann. Rev. Biochem., 55: 1151-1191.
Livak, KJ and Schmittgen, TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25: 402-408.
Lopes-Neto, BE; Souza, SCB; Bouty, LM; Santos, GJL; Oliveira, ES; de Freitas, JCC and Nunes-Pinheiro, DC (2017). CD4+, CD8+, FoxP3+ and HSP60+ expressions in cellular infiltrate of canine mammary carcinoma in mixed tumor. Acta Sci. Vet., 45: 1-8.
McNeill, RE; Miller, N and Kerin, MJ (2007). Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer. BMC Mol. Biol., 8: 1-13.
Mitchell, L; De la Iglesia, FA; Wenkoff, MS; Van Dreumel, AA and Lumb, G (1974). Mammary tumors in dogs: survey of clinical and pathological characteristics. Can. Vet. J., 15: 131-138.
Mori, D; Nakafusa, Y; Miyazaki, K and Tokunaga, O (2005). Differential expression of Janus kinase 3 (JAK3), matrix metalloproteinase 13 (MMP13), heat shock protein 60 (HSP60), and mouse double minute 2 (MDM2) in human colorectal cancer progression using human cancer cDNA microarrays. Pathol. Res. Pract., 201: 777-789.
Mulligan, RM (1975). Mammary cancer in the dog: a study of 120 cases. American J. Vet. Res., 36: 1391-1396.
Nakamura, H and Minegishi, H (2013). HSP60 as a drug target. Curr. Pharm. Des., 19: 441-451.
Pandey, M; Kumar, BVS; Gupta, K; Sethi, RS; Kumar, A and Verma, R (2018). Over-expression of mammaglobin-B in canine mammary tumors. BMC Vet. Res., 14: 1-8.
Pandey, M; Kumar, BVS and Verma, R (2015). Mammaglobin as a diagnostic serum marker of complex canine mammary carcinomas. Res. Vet. Sci., 103: 187-192.
Rizzardi, AE; Johnson, AT; Vogel, RI; Pambuccian, SE; Henriksen, J; Skubitz, AP; Metzger, GJ and Schmechel, SC (2012). Quantitative comparison of immuno-histochemical staining measured by digital image analysis versus pathologist visual scoring. Diag. Pathol., 7: 1-10.
Sambrook, J and Russell, DW (2001). Molecular cloning: a laboratory manual. 2nd Edn., Vol. 1, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. PP: 112-138.
Schneider, R; Dorn, CR and Taylor, DO (1969). Factors influencing canine mammary cancer development and postsurgical survival. J. Natl. Cancer Ins., 43: 1249-1261.
Schneider, J; Jimenez, E; Marenbach, K; Romero, H; Marx, D and Meden, H (1999). Immunohistochemical detection of HSP60-expression in human ovarian cancer. Correlation with survival in a series of 247 patients. Anticancer Res., 19: 2141-2146.
Seigneuric, R; Mjahed, H; Gobbo, J; Joly, AL; Berthenet, K; Shirley, S and Garrido, C (2011). Heat shock proteins as danger signals for cancer detection. Front. Oncol., 1: 37-47.
Sleeckx, N; de Rooster, H; Veldhuis Kroeze, EJ; Van Ginneken, C and Van Brantegem, L (2011). Canine mammary tumors, an overview. Rep. Dom. Anim., 46: 1112-1131.
Tang, Y; Zhou, Y; Fan, S and Wen, Q (2022). The multiple roles and therapeutic potential of HSP60 in cancer. Biochem. Pharmacol., 201: 115096-115109.
Timmermans-Sprang, EP; Gracanin, A and Mol, JA (2015). High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression. BMC Cancer. 15: 1-12.
Toogun, OA; DeZwaan, DC and Freeman, BC (2008). The hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol., 28: 457-467.
Towbin, H; Staehelin, T and Gordon, J (1979). Electrophoresis transfer of protein from polyacrylamide gels to nitrocellulose sheets. Procedure and applications. Proc. Natl. Acad. Sci. USA., 76: 4350-4354.
Tutar, L and Tutar, Y (2010). Heat shock proteins: an overview. Curr. Pharm. Biotechnol., 11: 216-222.
Wang, YS; Chi, KH and Chu, RM (2007). Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide-or tumor necrosis factor-alpha-induced maturation. Vet. Immunol. Immunopathol., 118: 186-198.
Weibezahn, J; Schlieker, C; Tessarz, P; Mogk, A and Bukau, B (2005). Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem., 386: 739-744.
Zhang, J; Zhou, X; Chang, H; Huang, X; Guo, X; Du, X; Tian, S; Wang, L; Lyv, Y; Yuan, P and Xing, J (2016). Hsp60 exerts a tumor suppressor function by inducing cell differentiation and inhibiting invasion in hepatocellular carcinoma. Oncotarget. 7: 68976-68989.