اثرات موسیقی و تاریکی بر توزیع رادیونوکلئید در اسکن FDG-PET موش

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: علاقه روزافزونی به پتانسیل درمانی موسیقی یا نور در اختلالات مختلف انسانی وجود دارد. هدف: در این مطالعه اثرات موسیقی و همچنین تاریکی بر جذب رادیوداروی FDG در موش‌های BALB/c حامل تومور 4T1 با استفاده از تصویربرداری PET مورد ارزیابی قرار گرفت. روش کار: گروه‌های موسیقی، تاریکی و موسیقی بعلاوه تاریکی به ترتیب 30 دقیقه قبل از تزریق رادیودارو تا پایان آزمایش تحت شرایط پخش موسیقی یا تاریکی و ترکیب آن‌ها قرار گرفتند. گروه کنترل در شرایط محیطی و در سکوت تصویربرداری شد. نتایج: نتایج نشان داد که موسیقی میزان SUVmean تومور را تغییر نداد، اما افزایش جزئی در SUVmean مغز (2/18%) و افزایش حدود 100% در میزان درصد دوز تزریقی در هر گرم از بافت مغز (%ID/g) مشاهده گردید. در مقابل، نتایج اندازه‌گیری‌ها نشان داد SUVmean قلب و %ID/g در بافت قلب گروه موسیقی تقریبا نصف گروه سکوت بود. همچنین SUVmean عضله و میزان اکتیویته موجود در خون در اثر مواجهه با موسیقی کاهش یافت. نتایج نشان داد که تفاوت معنی‌داری در نسبت جذب تومور به عضله (85% افزایش) و نسبت جذب مغز به عضله (افزایش 105%) بین گروه سکوت و موسیقی وجود دارد. در گروهی که در معرض تاریکی قرار داشتند، SUVmean عضله 50% کاهش یافت و نسبت تومور به عضله و مغز به عضله به ترتیب 44% و 60% افزایش یافت. نتیجه‌گیری: نتایج ما نشان می‌دهد که موسیقی و عوامل محیطی ممکن است بر جذب FDG در تصویربرداری PET حیوانات کوچک تاثیر بگذارد و همچنین نشان داده شد تصویربرداری FDG-PET به عنوان یک روش تصویربرداری در مطالعات ارزیابی مداخله موسیقی می‌تواند به محققان در بررسی تاثیرات موسیقی بر تغییرات مغز و متابولیسم بافت کمک کند.

کلیدواژه‌ها

موضوعات


Abbaspour, S; Tanha, K; Mahmoudian, B; Assadi, M and Pirayesh Islamian, J (2018). A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT. Appl. Radiat. Isot., 139: 53-60.
Abbott, A (2002). Neurobiology: Music, maestro, please! Nature. 416: 12-15.
Adler, SS; Seidel, J and Choyke, PL (2022). Advances in preclinical PET. Semin. Nucl. Med., 52: 382-402.
Agrawal, A and Rangarajan, V (2015). Appropriateness criteria of FDG PET/CT in oncology. Indian J. Radiol. Imaging. 25: 88-101.
Allen, K; Golden, LH; Izzo Jr, JL; Ching, MI; Forrest, A; Niles, CR; Niswander, PR and Barlow, JC (2001). Normalization of hypertensive responses during ambulatory surgical stress by perioperative music. Psychosom. Med., 63: 487-492.
Blask, DE (2009). Melatonin, sleep disturbance and cancer risk. Sleep Med. Rev., 13: 257-264.
Casali, M; Lauri, C; Altini, C; Bertagna, F; Cassarino, G; Cistaro, A; Erba, AP; Ferrari, C; Mainolfi, CG; Palucci, A and Prandini, N (2021). State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation. Clin. Transl. Img., 9: 299-339.
Chikahisa, S; Sei, H; Morishima, M; Sano, A; Kitaoka, K; Nakaya, Y and Morita, Y (2006). Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav. Brain Res., 169: 312-319.
Dallaspezia, S; Suzuki, M and Benedetti, F (2015). Chronobiological therapy for mood disorders. Curr. Psychiatr. Rep., 17: 1-11.
Emmer, KM; Russart, KLG; Walker, WH; Nelson, RJ and DeVries, AC (2018). Effects of light at night on laboratory animals and research outcomes. Behav. Neurosci., 132: 302-314.
Engwall, M; Fridh, I; Bergbom, I and Lindahl, B (2014). Let there be light and darkness: findings from a prestudy concerning cycled light in the intensive care unit environment. Crit. Care Nurs. Q., 37: 273-298.
Escribano, B; Quero, I; Feijóo, M; Tasset, I; Montilla, P and Túnez, I (2014). Role of noise and music as anxiety modulators: Relationship with ovarian hormones in the rat. Appl. Anim. Behav. Sci., 152: 73-82.
Fernandez, F (2019). Circadian responses to fragmented light: Research synopsis in humans. Yale J. Biol. Med., 92: 337-348.
Foster, NA and Valentine, ER (2001). The effect of auditory stimulation on autobiographical recall in dementia. Exp. Aging Res., 27: 215-228.
Gao, J; Chen, S; Lin, S and Han, H (2016). Effect of music therapy on pain behaviors in rats with bone cancer pain. J. BUON., 21: 466-472.
Hahn, A; Reed, MB; Vraka, C; Godbersen, GM; Klug, S; Komorowski, A; Falb, P; Nics, L; Traub-Weidinger, T and Hacker, M (2024). High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response. Eur. J. Nucl. Med. Mol. Imaging. 51: 1310-1322.
Hughes, JR and James, WH (2001). The mozart effect. J. R. Soc. Med., 94: 316-317.
Ito, S and Feldheim, DA (2018). The mouse superior colliculus: an emerging model for studying circuit formation and function. Front. Neural Circuits. 12: 1-11.
Jafarian-Dehkordi, F; Pashazadeh, A; Tanha, K and Hoeschen, C (2023). Calculation of standardized uptake values (SUVs) and time activity curves (TACs) of mice in FDG-PET. Curr. Dir. Biomed. Eng., 9: 118-121.
Jermann, F; Richard-Lepouriel, H and Aubry, JM (2020). Light-darkness and bipolar disorder. Rev. Med. Suisse. 16: 1745-1747.
Johnson, J; Cotman, C; Tasaki, C and Shaw, G (1998). Enhancement of spatial-temporal reasoning after a Mozart listening condition in Alzheimer’s disease: a case study. Neurol. Res., 20: 666-672.
Kirste, I; Nicola, Z; Kronenberg, G; Walker, TL; Liu, RC and Kempermann, G (2015). Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Struct. Funct., 220: 1221-1228.
Krause, BJ; Schwarzenbock, S and Souvatzoglou, M (2013). FDG PET and PET/CT. Recent Results Cancer Res., 187: 351-369.
Kühlmann, AYR; de Rooij, A; Hunink, MGM; De Zeeuw, CI and Jeekel, J (2018). Music affects rodents: A systematic review of experimental research. Front. Behav. Neurosci., 12: 1-19.
Mele, A; Avena, M; Roullet, P; De Leonibus, E; Mandillo, S; Sargolini, F; Coccurello, R and Oliverio, A (2004). Nucleus accumbens dopamine receptors in the consolidation of spatial memory. Behav. Pharmacol., 15: 423-431.
Noble, RM (2021). 18F-FDG PET/CT brain imaging. J. Nucl. Med. Technol., 49: 215-216.
Ohara, P and Havton, L (1996). Dendritic arbors of neurons from different regions of the rat thalamic reticular nucleus share a similar orientation. Brain Res., 731: 236-240.
Pacchetti, C; Mancini, F; Aglieri, R; Fundarò, C; Martignoni, E and Nappi, G (2000). Active music therapy in Parkinson’s disease: an integrative method for motor and emotional rehabilitation. Psychosom. Med., 62: 386-393.
Pashazadeh, A; Jafarian-Dehkordi, F; Hoeschen, C and Tanha, K (2023). U-Net-based SUV calculation in FDG-PET imaging of mice brain for enhanced analysis. Curr. Dir. Biomed. Eng., 9: 291-294.
Pashazadeh, A; Jafarian-Dehkordi, F; Tanha, K and Assadi, M (2015). The effect of electromagnetic field generated by a mobile phone on the performance of a SPECT scanner: A quantitative study. Clin. Nucl. Med., 40: 545-547.
Rauscher, F; Robinson, D and Jens, J (1998). Improved maze learning through early music exposure in rats. Neurol. Res., 20: 427-432.
Rauscher, FH; Shaw, GL; Levine, LJ; Ky, KN and Wright, EL (1994). Music and spatial task performance: A causal relationship. Paper presented at the 102nd Annual Convention of the American Psychological Association, Los Angeles, CA, August.
Refinetti, R (2006). Variability of diurnality in laboratory rodents. J. Comp. Physiol. A. Neuroethol., 192: 701-714.
Rocha, CS; Rato, L; Martins, AD; Alves, MG and Oliveira, PF (2015). Melatonin and male reproductive health: relevance of darkness and antioxidant properties. Curr. Mol. Med., 15: 299-311.
Schernhammer, E and Schulmeister, K (2004). Light at night and cancer risk. Photochem. Photobiol., 79: 316-318.
Schwartz, RS and Olds, J (2015). The psychiatry of light. Harv. Rev. Psychiatry. 23: 188-194.
Shen, S; Liao, Q; Wong, YK; Chen, X; Yang, C; Xu, C; Sun, J and Wang, J (2022). The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer’s disease. Int. J. Biol. Sci., 18: 983-994.
Skene, DJ and Arendt, J (2006). Human circadian rhythms: physiological and therapeutic relevance of light and melatonin. Ann. Clin. Biochem., 43: 344-353.
Sosa, M; Gillespie, AK and Frank, LM (2018). Neural activity patterns underlying spatial coding in the hippocampus. Curr. Top. Behav. Neurosci., 37: 43-100.
Sutoo, De and Akiyama, K (2004). Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation. Brain Res., 1016: 255-262.
 
Tanha, K; Fatemikia, H; Assadi, M and Seyedabadi, M (2017). Assessment of the maximum uptake time of 99mTc-DMSA in renal scintigraphy in rat. Iran J. Nucl. Med., 25: 110-114.
Tasset, I; Quero, I; García-Mayórgaz, ÁD; Del Río, MC; Túnez, I and Montilla, P (2012). Changes caused by haloperidol are blocked by music in Wistar rat. J. Physiol. Biochem., 68: 175-179.
Ten Hove, D; Slart, R; Sinha, B; Glaudemans, A and Budde, RPJ (2021). 18F-FDG PET/CT in infective endocarditis: Indications and approaches for standardization. Curr. Cardiol. Rep., 23: 130-140.
Turner, RP (2004). The acute effect of music on interictal epileptiform discharges. Epilepsy Behav., 5: 662-668.
Uchiyama, M; Jin, X; Zhang, Q; Hirai, T; Amano, A; Bashuda, H and Niimi, M (2012). Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+ CD25+ cells. J. Cardiothorac. Surg., 7: 1-8.
Underwood, W and Anthony, R (2020). AVMA guidelines for the euthanasia of animals. 2020 Edition, Retrieved on March, 2013, 30: 2020-2021.
Wehr, TA (1998). Effect of seasonal changes in daylength on human neuroendocrine function. Horm. Res., 49: 118-124.
Xing, Y; Xia, Y; Kendrick, K; Liu, X; Wang, M; Wu, D; Yang, H; Jing, W; Guo, D and Yao, D (2016). Mozart, Mozart rhythm and retrograde Mozart effects: evidences from behaviours and neurobiology bases. Sci. Rep., 6: 1-11.
Zatorre, R (2005). Music, the food of neuroscience? Nature. 434: 312-315.