ارزیابی پتانسیل درمانی سلول‌های بنیادی مشتق از چربی با استفاده از پد چربی زیر کشکک زانو و سکرتوم آن‌ها برای بازسازی غضروف مفصلی زانو در مدل رت دارای استئوآرتریت

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: درمان با سلول‌های بنیادی مزانشیمال (MSCs) اثرات تسکین‌بخش در درمان بیماری استئوآرتریت زانو (KOA) دارد. همچنین، علاقه به استفاده از سکرتوم (Sec) مشتق از MSCs که حاوی فاکتورهای رشد می‌باشند برای KOA در حال افزایش است. اخیرا برخی مطالعات نشان داده‌اند که ترکیب MSCs و Sec پتانسیل درمانی قابل توجهی دارد. هدف: هدف از این مطالعه ارزیابی اثرات تسکین ‌بخش ترکیب MSCs مشتق از سلول‌های چربی استخراج شده از توده چربی پشت کشکک زانو (IPFP-ASCs)، برای درمان غضروف تخریب شده در مدل رت KOA می‌باشد. روش کار: مواد ASCs از بافت چربی پشت کشکک زانو رت‌های نر جدا شدند. Sec از پاساژ چهارم IPFP-ASCs به دست آمد. هشت هفته پس از ایجاد KOA توسط تزریق کلاژناز دو، رت‌ها به 5 گروه  (n=5)تقسیم شدند. گروه‌ها شامل گروه کنترل بدون درمان و چهار گروه آزمایشی که به ترتیب هیالگان، ASCs، Sec، و IPFP-ASCs+Sec بودند و همگی هیالورونات سدیم دریافت کردند. برای ارزیابی‌های پاتولوژی و رادیولوژی، حیوانات هشت هفته پس از درمان آسان کشی شدند. نتایج: یافته‌ها نشان دادند که استفاده از ترکیب IPFP-ASCs و Sec از نظر آماری به طور معنی‌داری (P<0.05) نمرات استوفیت‌های کندیل‌های سطح Medial استخوان‌های درشت نی و استخوان ران و استئوفیت استخوان‌ کنجدی نازک‌نی را بهبود بخشید. همچنین، به طور معنی‌داری (P<0.05) شاخص‌های سطح غضروفی زیر استخوانی، ماتریکس، توزیع و تعداد سلول‌ها را افزایش داد. تفاوت آماری معنی‌داری بین گروه‌های IPFP-ASCs+Sec و IPFP-ASCs مشاهده نشد. نتیجه‌گیری: استفاده از IPFP-ASCs+Sec پتانسیل قابل توجه درمانی برای درمان KOA دارد. با این حال، تفاوتی در استفاده ترکیبی IPFP-ASCs+Sec با IPFP-ASCs به صورت تنها مشاهده نشد.

کلیدواژه‌ها

موضوعات


Abd-Elsayed, A (2018). Stem cells for the treatment of knee osteoarthritis: a comprehensive review. Pain Physician. 21: 229-241.
Bahmanpour, S; Talaei Khozani, T and Rezaei Tazangi, F (2019). Evaluation of the capability of the Wharton’s jelly mesenchymal stem cell aggregates to express the markers of three germ cell lineages. Arch. Iran. Med., 22: 85-90.
Chen, D; Shen, J; Zhao, W; Wang, T; Han, L; Hamilton, JL and Im, HJ (2017). Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 5: 1-13.
Cui, A; Li, H; Wang, D; Zhong, J; Chen, Y and Lu, H (2020). Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. E Clinical Medicine. 30: 1-13.
D’arrigo, D; Roffi, A; Cucchiarini, M; Moretti, M; Candrian, C and Filardo, G (2019). Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: a systematic review. J. Clin. Med., 8: 1-16.
Ding, DC; Wu, KC; Chou, HL; Hung, WT; Liu, HW and Chu, TY (2015). Human infrapatellar fat pad-derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan. Cell Transplant. 24: 1221-1232.
Doyle, LM and Wang, MZ (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8: 727-750.
Eleuteri, S and Fierabracci, A (2019). Insights into the secretome of mesenchymal stem cells and its potential applications. Int. J. Mol. Sci., 20: 1-22.
English, A; Jones, E; Corscadden, D; Henshaw, K; Chapman, T; Emery, P and Mcgonagle, D (2007). A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology. 46: 1676-1683.
Ferreira, JR; Teixeira, GQ; Santos, SG; Barbosa, MA; Almeida-Porada, G and Gonçalves, RM (2018). Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol., 9: 1-17.
Fraser, JK; Wulur, I; Alfonso, Z and Hedrick, MH (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol., 24: 150-154.
Fujii, S; Endo, K; Matsuta, S; Komori, K and Sekiya, I (2022). Comparison of the yields and properties of dedifferentiated fat cells and mesenchymal stem cells derived from infrapatellar fat pads. Regen Ther., 21: 611-619.
Garcia, J; Wright, K; Roberts, S; Kuiper, JH; Mangham, C; Richardson, J and Mennan, C (2016). Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus. Sci. Rep., 6: 1-11.
Grassel, S and Muschter, D (2020). Recent advances in the treatment of osteoarthritis. F1000Res. 9: 1-17.
Harrell, CR; Fellabaum, C; Jovicic, N; Djonov, V; Arsenijevic, N and Volarevic, V (2019). Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 8: 1-34.
Haubruck, P; Heller, R; Blaker, CL; Clarke, EC; Smith, SM; Burkhardt, D; Liu, Y; Stoner, S; Zaki, S and Shu, CC (2023). Streamlining quantitative joint-wide medial femoro-tibial histopathological scoring of mouse post-traumatic knee osteoarthritis models. Osteoarthritis Cartilage. 31: 1602-1611.
Hermann, W; Lambova, S and Muller-Ladner, U (2018). Current treatment options for osteoarthritis. Curr Rheumato. Rev, 14: 108-116.
Householder, NA; Raghuram, A; Agyare, K; Thipaphay, S and Zumwalt, M (2023). A review of recent innovations in cartilage regeneration strategies for the treatment of primary osteoarthritis of the knee: Intra-articular injections. Orthop. J. Sports Med., 11: 1-20.
Huang, R; Li, W; Zhao, Y; Yang, F and Xu, M (2020). Clinical efficacy and safety of stem cell therapy for knee osteoarthritis: A meta-analysis. Medicine (Baltimore). 99: e19434.
Hunter, DJ; Schofield, D and Callander, E (2014). The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol, 10: 437-441.
Hussain, SM; Neilly, DW; Baliga, S; Patil, S and Meek, R (2016). Knee osteoarthritis: a review of management options. Scott. Med. J., 61: 7-16.
Kan, C; Chen, L; Hu, Y; Lu, H; Li, Y; Kessler, JA and Kan, L (2017). Microenvironmental factors that regulate mesenchymal stem cells: lessons learned from the study of heterotopic ossification. Histol Histopathol, 32: 1-16.
Kangari, P; Talaei-Khozani, T; Razeghian-Jahromi, I and Razmkhah, M (2020). Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res. Ther., 11: 1-21.
Kouroupis, D; Bowles, AC; Willman, MA; Perucca Orfei, C; Colombini, A; Best, TM; Kaplan, LD and Correa, D (2019). Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Sci. Rep., 9: Hi1-16.
Kouroupis, D; Kaplan, LD and Best, TM (2022). Human infrapatellar fat pad mesenchymal stem cells show immunomodulatory exosomal signatures. Sci. Rep., 12: 1-15.
Kurniawan, A; Ivansyah, MD; Dilogo, IH and Hutami, WD (2023). Umbilical cord mesenchymal stem cells combined with secretome for treating congenital pseudarthrosis of the Tibia: a case series. Eur J Orthop Surg. Traumatol., 33: 2881-2888.
Liao, HJ; Chang, CH; Huang, CF and Chen, HT (2022). Potential of using infrapatellar-fat-pad-derived mesenchymal stem cells for therapy in degenerative arthritis: Chondrogenesis, exosomes, and transcription regulation. Biomolecules. 12: 386-397.
Loo, SJQ and Wong, NK (2021). Advantages and challenges of stem cell therapy for osteoarthritis (Review). Biomed. Rep., 15: 67-78.
Mainil-Varlet, P; Aigner, T; Brittberg, M; Bullough, P; Hollander, A; Hunziker, E; Kandel, R; Nehrer, S; Pritzker, K; Roberts, S; Stauffer, E and International Cartilage Repair, S (2003). Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J. Bone Jt. Surg., 85: 45-57.
Nabavizadeh, SS; Talaei-Khozani, T; Zarei, M; Zare, S; Hosseinabadi, OK; Tanideh, N and Daneshi, S (2022). Attenuation of osteoarthritis progression through intra-articular injection of a combination of synovial membrane-derived MSCs (SMMSCs), platelet-rich plasma (PRP) and conditioned medium (secretome). J. Orthop. Surg. Res., 17: 1-12.
Nowzari, F; Zare, M; Tanideh, N; Meimandi-Parizi, A; Kavousi, S; Saneian, SM; Zare, S; Koohi-Hosseinabadi, O; Ghaemmaghami, P; Dehghanian, A; Daneshi, S; Azarpira, N; Aliabadi, A; Samimi, K; Irajie, C and Iraji, A (2023). Comparing the healing properties of intra-articular injection of human dental pulp stem cells and cell-free-secretome on induced knee osteoarthritis in male rats. Tissue Cell. 82: 1-15.
Oh, SJ; Choi, KU; Choi, SW; Kim, SD; Kong, SK; Lee, S and Cho, KSJSCI (2020). Comparative analysis of adipose-derived stromal cells and their secretome for auricular cartilage regeneration. Stem. Cells. Int., 2: 1-8.
Primorac, D; Molnar, V; Rod, E; Jeleč, Ž; Čukelj, F; Matišić, V; Vrdoljak, T; Hudetz, D; Hajsok, H and Borić, I (2020). Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes. 11: 854-892.
Ragni, E; Colombini, A; Vigano, M; Libonati, F; Perucca Orfei, C; Zagra, L and De Girolamo, L (2021). Cartilage protective and immunomodulatory features of osteoarthritis synovial fluid-treated adipose-derived mesenchymal stem cells secreted factors and extracellular vesicles-embedded miRNAs. Cells. 10: 1072-1084.
Rezuş, E; Burlui, A; Cardoneanu, A; Macovei, LA; Tamba, BI and Rezuş, C (2021). From pathogenesis to therapy in knee osteoarthritis: bench-to-bedside. Int. J. Mol. Sci., 22: 2697-2720.
Shariatzadeh, M; Song, J and Wilson, SL (2019). The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res., 378: 399-410.
Soetjahjo, B and Utomo, DN (2022). Mesenchymal stem cells secretome and osteoarthritis: A state of the art. Hip Knee J., 3: 56-63.
Sun, Y; Chen, S and Pei, M (2018). Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology (Oxford). 57: 2072-
2086.
Sun, C; Zhang, X; Lee, WG; Tu, Y; Li, H; Cai, X and Yang, H (2020). Infrapatellar fat pad resection or preservation during total knee arthroplasty: a meta-analysis of randomized controlled trials. J. Orthop. Surg. Res., 15: 297-305.
Tanideh, N; Nabavizadeh, SS; Ashkani-Esfahani, S; Hosseinabadi, OK; Ghaemmaghami, P; Zare, S; Azarpira, N; Tanideh, R and Daneshi, S (2021). Paracrine effect of synovial-derived stem cells on induced knee osteoarthritis in rats. Shiraz E-Med. J., 22: 1-8.
Trzyna, A and Banaś-Ząbczyk, A (2021). Adipose-derived stem cells secretome and its potential application in “stem cell-free therapy”. Biomolecules. 11: 878-901.
Vahedi, P; Moghaddamshahabi, R; Webster, TJ; Calikoglu Koyuncu, AC; Ahmadian, E; Khan, WS; Jimale Mohamed, A and Eftekhari, A (2021). The use of infrapatellar fat pad-derived mesenchymal stem cells in articular cartilage regeneration: A review. Int. J. Mol. Sci., 22: 9215-9227.
Xu, Z; Chen, T; Luo, J; Ding, S; Gao, S and Zhang, J (2017). Cartilaginous metabolomic study reveals potential mechanisms of osteophyte formation in osteoarthritis. J. Proteome Res., 16: 1425-1435.
Yao, B; Samuel, LT; Acuna, AJ; Faour, M; Roth, A; Kamath, AF and Mont, MA (2021). Infrapatellar fat pad resection or preservation during total knee arthroplasty: A systematic review. J. Knee Surg., 34: 415-421.
Zare, R; Tanideh, N; Nikahval, B; Mirtalebi, MS; Ahmadi, N; Zarea, S; Hosseinabadi, OK; Bhimani, R and Ashkani-Esfahani, S (2020). Are stem cells derived from synovium and fat pad able to treat induced knee osteoarthritis in rats? Int. J. Rheumatol., 2020: 1-8.
Zhang, R; Ma, J; Han, J; Zhang, W and Ma, J (2019). Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am. J. Transl. Res., 11: 6275-6289.
Zhong, YC; Wang, SC; Han, YH and Wen, Y (2020). Recent advance in source, property, differentiation, and applications of infrapatellar fat pad adipose-derived stem cells. Stem. Cells Int., 2020: 1-14.
Zhu, X; Chan, YT; Yung, PS; Tuan, RS and Jiang, Y (2021). Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol. 8: 1-19.
Zhuang, L; Hulin, JA; Gromova, A; Tran Nguyen, TD; Yu, RT; Liddle, C; Downes, M; Evans, RM; Makarenkova, HP and Meech, R (2014). Barx2 and Pax7 have antagonistic functions in regulation of Wnt signaling and satellite cell differentiation. Stem. Cells. 32: 1661-1673.