غلظت سرمی 25 هیدروکسی ویتامین دی در گربه‌های به ظاهر سالم و ارتباط آن با سن، جنس، نژاد، جیره غذایی، وضعیت تولید مثلی و نحوه نگهداری

نوع مقاله : مقاله کوتاه

نویسندگان

چکیده

پیشینه: اعتقاد بر این است که مقادیر ویتامین D جهت ایفای نقش موثر در عملکرد ایمنی و پیشگیری از راشیتیسم متفاوت است اما این موضوع هنوز با قطعیت کشف نشده است. در گزارش‌های مربوط به گربه‌ها، مقادیر مرجع 25(OH)D محدود است. هدف: اطلاعات بیشتری در مورد مقادیر مرجع در سن، جنس، نژاد، نوع رژیم غذایی، وضعیت تولید مثل، وضعیت نگهداری و همچنین ارتباط بین ویتامین D با مقادیر خون شناسی و بیوشیمی بالینی لازم می‌باشد. روش کار: 88 گربه سالم در این مطالعه انتخاب شدند. معاینات بالینی و آزمون‌های هماتولوژی و بیوشیمیایی به منظور تایید وضعیت سلامت آن‌ها انجام شد. 25(OH)D سرم متعاقباً با روش الایزا معتبر اندازه‌گیری شد و اثر سن (زیر شش ماه و بالای شش ماه)، جنسیت، نژاد، رژیم غذایی (فقط رژیم غذایی تجاری، غذای خانگی، ترکیبی از غذای تجاری و خانگی)، وضعیت تولید مثل و شرایط نگهداری بر روی 25(OH)D سرم بررسی شد. نتایج: میانه و صدک‌های 5/2% و 5/97% 25(OH)D در 88 گربه نمونه‌برداری شده به ترتیب 74/19 نانوگرم در میلی لیتر، 12/3 نانوگرم در میلی لیتر، و 1/92 نانوگرم در میلی لیتر بود. غلظت سرمی 25(OH)D در رژیم غذایی خانگی در مقایسه با رژیم‌های غذایی تجاری و ترکیبی داده شده و در گربه‌های زیر شش ماه در مقایسه با گربه‌های مسن‌تر کمتر بود. نتیجه‌گیری: رژیم‌های غذایی و سن می‌توانند بر غلظت سرمی 25(OH)D در گربه‌های سالم اثرگذار باشند در حالیکه سایر پارامترها اثر معنی‌داری بر غلظت سرمی 25(OH)D نداشتند.

کلیدواژه‌ها

موضوعات


Ahmadi, S and Mohri, M (2021). New outlook to vitamin D functions in dairy cows: non-classical roles. Iran. J. Vet. Sci. Techno., 13: 1-11.
Alizadeh, K; Ahmadi, S; Sarchahi, AA and Mohri, M (2022). The effects of age, sex, breed, diet, reproductive status and housing condition on the amounts of 25 (OH) vitamin D in the serum of healthy dogs: Reference values. Vet. Med. Sci., 8: 2360-2366.
Cline, J (2012). Calcium and vitamin D metabolism, deficiency, and excess. Top. Comp. Anim. Med., 27: 159-164.
da Fonseca, FM; Beltrame, OC; Seixas, SV; Laskoski, LM; Félix, AP and Locatelli-Dittrich, R (2020). Serum concentration of 25 (OH) vitamin D in healthy dogs: factors as age, sex, and diet. Comp. Clin. Pathol., 29: 697-703.
Fahey, JrGC; Barry, KA and Swanson, KS (2008). Age-related changes in nutrient utilization by companion animals. Annu. Rev. Nutr., 28: 425-445.
Girard, N; Servet, E; Hennet, P and Biourge, V (2010). Tooth resorption and vitamin D3 status in cats fed premium dry diets. J. Vet. Dent., 27: 142-147.
Hazewinkel, HA and Tryfonidou, MA (2002). Vitamin D3 metabolism in dogs. Mol. Cell. Endocrinol., 197: 23-33.
Hurst, EA; Homer, NZ and Mellanby, RJ (2020). Vitamin D metabolism and profiling in veterinary species. Metabolites. 10: 371.
Lalor, SM; Mellanby, RJ; Friend, EJ; Bowlt, KL; Berry, J and Gunn-Moore, D (2012). Domesticated cats with active mycobacteria infections have low serum vitamin D (25 (OH) D) concentrations. Trans. Emerg. Dis., 59: 279-281.
Morris, JG (1999). Ineffective vitamin D synthesis in cats is reversed by an inhibitor of 7-dehydrocholestrol-Δ7-reductase. J. Nutr., 129: 903-908.
Morris, JG (2002a). Cats discriminate between cholecalciferol and ergocalciferol. J. Anim. Physiol. Anim. Nutr., 86: 229-238.
Morris, JG (2002b). Idiosyncratic nutrient requirements of
cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Rev., 15: 153-168.
Morris, JG; Earle, KE and Anderson, PA (1999). Plasma 25-hydroxyvitamin D in growing kittens is related to dietary intake of cholecalciferol. J. Nutr., 129: 909-912.
Paßlack, N; Schmiedchen, B; Raila, J; Schweigert, FJ; Stumpff, F; Kohn, B; Neumann, K and Zentek, J (2016). Impact of increasing dietary calcium levels on calcium excretion and vitamin D metabolites in the blood of healthy adult cats. PLoS One. 11: e0149190.
Parker, VJ; Rudinsky, AJ and Chew, DJ (2017). Vitamin D metabolism in canine and feline medicine. JAVMA, 250: 1259-1269.
Pineda, C; Aguilera-Tejero, E; Guerrero, F; Raya, AI; Rodriguez, M and Lopez, I (2013). Mineral metabolism in growing cats: changes in the values of blood parameters with age. J. Fel. Med. Surg., 15: 866-871.
Sprinkle, MC; Hooper, SE and Backus, RC (2018). Previously undescribed vitamin D C-3 epimer occurs in substantial amounts in the blood of cats. J. Fel. Med. Surg., 20: 83-90.
Titmarsh, HF; Cartwright, JA; Kilpatrick, S; Gaylor, D; Milne, EM; Berry, JL; Bommer, NX; Gunn-Moore, D; Reed, N; Handel, I and Mellanby, RJ (2017). Relationship between vitamin D status and leukocytes in hospitalised cats. J. Fel. Med. Surg., 19: 364-369.
Titmarsh, HF; Lalor, SM; Tasker, S; Barker, EN; Berry, J; Gunn-More, D and Mellanby, RJ (2015). Vitamin D status in cats with feline immunodeficiency virus. Vet. Med. Sci., 1: 72-78.
Titmarsh, HF; Woods, GA; Cartwright, JA; Kilpatrick, S; Gaylor, D; Berry, J; Gow, A; Bommer, NX; Gunn-Moore, D; Handel, I and Mellanby, RJ (2020). Low vitamin D status is associated with anaemia in hospitalised cats. Vet. Rec., 187: e6.
Tryfonidou, MA; Holl, MS; Stevenhagen, JJ; Buurman, CJ; Deluca, HF; Oosterlaken-Dijksterhuis, MA; Van Den Brom, WE; Van Leeuwen, JP and Hazewinkel, HA (2003). Dietary 135-fold cholecalciferol supplementation severely disturbs the endochondral ossification in growing dogs. Domes. Anim. Endocrinol., 24: 265-285.
Ware, WA; Freeman, LM; Rush, JE; Ward, JL; Makowski, AJ and Zhang, M (2020). Vitamin D status in cats with cardiomyopathy. J. Vet. Inter. Med., 34: 1389-1398.
Zafalon, RV; Risolia, LW; Pedrinelli, V; Vendramini, TH; Rodrigues, RB; Amaral, AR; Kogika, MM and Brunetto, MA (2020). Vitamin D metabolism in dogs and cats and its relation to diseases not associated with bone metabolism. J. Anim. Physiol. Anim. Nutr., 104: 322-342.