بهینه‌یابی غلظت گاما-اوریزانول در محیط‌های بلوغ یا کشت برای تکامل تخمک و رویان گوسفند در آزمایشگاه

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: راندمان تولید جنین آزمایشگاهی در گوسفند هنوز پایین است. هدف: پژوهش حاضر اثرات غلظت‌های مختلف گاما-اوریزانول در محیط‌های بلوغ تخمک و کشت رویان گوسفند در آزمایشگاه را مورد بررسی قرار داد. روش کار: مجموعه تخمک-سلول‌های کومولوس دارای ظاهر نرمال از تخمدان‌های گوسفندی کشتارگاهی جمع آوری شده و در محیط بلوغ غنی شده با غلظت‌های 0، 5/2، 5، 10، 50، و 100 میکرومول گاما-اوریزانول به مدت 24 ساعت بالغ شدند و پس از انجام مراحل لقاح آزمایشگاهی، رویان‌های حاصله برای ارزیابی قابلیت گشنیدگی و تکامل مورد ارزیابی قرار گرفتند. رویان‌های حاصل از بلوغ و لقاح آزمایشگاهی گروه دیگری از مجموعه تخمک-سلول‌های کومولوس، در محیط کشت غنی شده با غلظت‌های 0، 5/2، 5، 10، 20، و 50 میکرومول در انکوباتورهای دارای سطح اکسیژن 7% و 20% کشت داده شدند و تکامل آن‌ها مورد ارزیابی قرار گرفت. برای هر آزمایش یک گروه کنترل در نظر گرفته شد. نتایج: انبساط سلول‌های کومولوسی و نرخ بقای رویان در غلظت‌های 20، 50، و 100 میکرومول به شدت کاهش پیدا کرد که نشان دهنده اثر مصرف بیش از حد است. نرخ کلیواژ و تشکیل بلاستوسیست در گروه بالغ شده با 5 میکرومول گاما-اوریزانول به صورت معنی‌دار بالاتر از سایر گروه‌ها بود. رویان‌های کشت داده شده در غلظت‌های 5 و 10 میکرومول گاما-اوریزانول در هر دو غلظت 7% و 20% اکسیژن نیز به طور معنی‌دار بالاترین نرخ کلیواژ و تشکیل بلاستوسیست را داشتند (P<0.05). نتیجه‌گیری: پژوهش حاضر اولین گزارش از اثرات مثبت گاما-اوریزانول به عنوان مکمل محیط بلوغ و کشت آزمایشگاهی رویان گوسفند را ارائه می‌دهد و غلظت‌های 5 و 10 میکرومول گاما-اوریزانول در محیط‌های رشد آزمایشگاهی تخمک و رویان گوسفند به عنوان دوز بهینه پیشنهاد می‌گردد.

کلیدواژه‌ها


Abecia, JA; Forcada, F; Vázquez, MI; Muiño-Blanco, T; Cebrián-Pérez, JA; Pérez-Pe, R and Casao, A (2019). Role of melatonin on embryo viability in sheep. Reprod. Fertil. Dev., 31: 82-92.
Agarwal, A; Durairajanayagam, D and Du Plessis, SS (2014). Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol., 12: 1-19.
Agarwal, A; Maldonado Rosas, I; Anagnostopoulou, C; Cannarella, R; Boitrelle, F; Munoz, LV; Finelli, R; Durairajanayagam, D; Henkel, R and Saleh, R (2022). Oxidative stress and assisted reproduction: a com-prehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants. 11: 477-498.
Akihisa, T; Yasukawa, K; Yamaura, M; Ukiya, M; Kimura, Y; Shimizu, N and Arai, K (2000). Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J. Agric. Food Chem., 48: 2313-2319.
Aruoma, O; Halliwell, B; Laughton, M; Quinlan, G and Gutteridge, J (1989). The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron (Ii)-Iron (Iii) complex. Biochem. J., 258: 617-620.
Bonni, R; Cuomo, A and Tosti, E (2002). Developmental potential in bovine oocytes is related to cumulus-oocyte complex grade, calcium current activity, and calcium stores. Biol. Reprod., 66: 836-842.
Chanapiwat, P and Kaeoket, K (2015). Breed of boar influences the optimal concentration of gamma-oryzanol needed for semen cryopreservation. Reprod. Domest. Anim., 50: 221-226.
Cicero, A and Gaddi, A (2001). Rice bran oil and γ-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother. Res., 15: 277-289.
Cognie, Y; Baril, G; Poulin, N and Mermillod, P (2003). Current status of embryo technologies in sheep and goat. Theriogenology. 59: 171-188.
Davoodian, N; Kadivar, A; Ahmadi, E; Nazari, H and Mehrban, H (2021). Quercetin effect on the efficiency of ovine oocyte vitrification at Gv stage. Theriogenology. 174: 53-59.
de Oliveira, LRM; de Aquino, LVC; de Oliveira Santos, MV; de Figueirêdo Freitas, VJ; Bertini, LM; Pereira, AF and Ungerfeld, R (2021). Effects of different concentrations of eugenol in maturation medium on bovine oocytes, oxidative status and preimplantation embryos. Anim. Prod. Sci., 62: 142-151.
Francisqueti, FV; Ferron, AJT; Hasimoto, FK; Alves, PHR; Garcia, JL; Dos Santos, KC; Moreto, F; Silva, VDS; Ferreira, ALA and Minatel, IO (2018). Gamma oryzanol treats obesity-induced kidney injuries by modulating the adiponectin receptor 2/Ppar-Α axis. Oxid. Med. Cell. Longev., 2018: ID 1278392.
Gad, A; Hoelker, M; Besenfelder, U; Havlicek, V; Cinar, U; Rings, F; Held, E; Dufort, I; Sirard, MA and Schellander, K (2012). Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol. Reprod., 87: 100-101.
Guerin, P; El Mouatassim, S and Menezo, Y (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 7: 175-189.
Huang, L; Jiang, W; Zhu, L; Ma, C; Ou, Z; Luo, C; Wu, J; Wen, L; Tan, Z and Yi, J (2020). γ-oryzanol suppresses cell apoptosis by inhibiting reactive oxygen species-mediated mitochondrial signaling pathway in H2O2-stimulated L02 cells. Hum. Reprod. Update. 121: 109554.
Juliano, C; Cossu, M; Alamanni, MC and Piu, L (2005). Antioxidant activity of gamma-oryzanol: mechanism of action and its effect on oxidative stability of pharmaceutical oils. Hum. Reprod. Update. 299: 146-154.
Jung, CH; Lee, DH; Ahn, J; Lee, H; Choi, WH; Jang, YJ and Ha, TY (2015). γ-oryzanol enhances adipocyte differentiation and glucose uptake. Nutrients. 7: 4851-4861.
Kaps, M and Lamberson, WR (2017). Biostatistics for animal science. Cabi.
Lenth, R; Singmann, H; Love, J; Buerkner, P and Herve, M (2019). Estimated marginal means, Aka least-squares means. R Package Version 1.3.2. J. Stat. Softw., 1.
Lima, F; Bezerra, F; Souza, G; Matos, M; Van Den Hurk, R and Silva, J (2018). Influence of interleukin 1 beta and tumour necrosis factor alpha on the in vitro growth, maturation and mitochondrial distribution of bovine oocytes from small antral follicles. Zygote. 26: 381-387.
Minatel, IO; Francisqueti, FV; Corrêa, CR and Lima, GPP (2016). Antioxidant activity of γ-oryzanol: a complex network of interactions. Int. J. Mol. Sci., 17: 1107-1121.
Mishra, A; Reddy, I; Dhali, A and Javvaji, P (2018). L-ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. Zygote. 26: 149-161.
Moon, SH; Kim, D; Shimizu, N; Okada, T; Hitoe, S and Shimoda, H (2017). Ninety-day oral toxicity study of rice-derived γ-oryzanol in Sprague-Dawley rats. Int. J. Mol. Sci., 4: 9-18.
Noda, Y; Matsumoto, H; Umaoka, Y; Tatsumi, K; Kishi, J and Mori, T (1991). Involvement of superoxide radicals in the mouse two-cell block. Mol. Reprod. Dev., 28: 356-360.
Panchal, SS; Patidar, RK; Jha, AB; Allam, AA; Ajarem, J and Butani, SB (2017). Anti-inflammatory and anti-oxidative stress effects of oryzanol in glaucomatous rabbits. J. Ophthalmol., 2017: ID 1468716.
Rao, YPC; Sugasini, D and Lokesh, B (2016). Dietary gamma oryzanol plays a significant role in the anti-inflammatory activity of rice bran oil by decreasing pro-inflammatory mediators secreted by peritoneal macrophages of rats. Biochem. Biophys. Res. Commun., 479: 747-752.
Rungratanawanich, W; Abate, G; Serafini, MM; Guarienti, M; Catanzaro, M; Marziano, M; Memo, M; Lanni, C and Uberti, D (2018). Characterization of the antioxidant effects of γ-oryzanol: involvement of the Nrf2 pathway. Oxid. Med. Cell. Longev., 2018: ID 2987249.
Sá, NA; Vieira, LA; Ferreira, ACA; Cadenas, J; Bruno, JB;
Maside, C; Sousa, FG; Cibin, FW; Alves, BG and Rodrigues, APR
(2020). Anethole supplementation during oocyte maturation improves in vitro production of bovine embryos. Reprod. Sci., 27: 1602-1608.
Ullah, O; Li, Z; Ali, I; Xu, L; Liu, H; Shah, SZA and Fang, N (2019). Pterostilbene alleviates hydrogen peroxide-induced oxidative stress via nuclear factor erythroid 2 like 2 pathway in mouse preimplantation embryos. J. Reprod. Dev., 65: 73-81.
Wang, X; Falcone, T; Attaran, M; Goldberg, JM; Agarwal, A and Sharma, RK (2002). Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil. Steril., 78: 1272-1277.
Wilson, TA; Nicolosi, RJ; Woolfrey, B and Kritchevsky, D (2007). Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. J. Nutr. Biochem., 18: 105-112.
Wooldridge, LK and Ealy, AD (2019). Interleukin-6 increases inner cell mass numbers in bovine embryos. BMC Dev. Biol., 19: 1-11.
Yasukawa, K; Akihisa, T; Kimura, Y; Tamura, T and Takido, M (1998). Inhibitory effect of cycloartenol ferulate, a component of rice bran, on tumor promotion in two-stage carcinogenesis in mouse skin. Biol. Pharm. Bull., 21: 1072-1076.
Zabihi, A; Shabankareh, HK; Hajarian, H and Foroutanifar, S (2019). Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domest. Anim. Endocrinol., 68: 25-31.
Zolali, E; Asgharian, P; Hamishehkar, H; Kouhsoltani, M; Khodaii, H and Hamishehkar, H (2015). Effects of gamma oryzanol on factors of oxidative stress and sepsis-induced lung injury in experimental animal model. Iran. J. Basic. Med. Sci., 18: 1257-1263.