ارزیابی اولیه عصاره‌ پروتئین cement-cone کنه برای ساخت واکسن علیه آلودگی با هیالوما

نوع مقاله : مقاله کامل

نویسندگان

Sariab Road Quetta

چکیده

پیشینه: واکسن‌ها به طور گسترده‌ای برای جلوگیری از عفونت‌های منتقله از کنه‌ها، در گاو مورد استفاده قرار گرفته‌اند. اکثر واکسن‌ها در مزرعه به دلیل ناسازگاری در پاسخ ایمنی با شکست مواجه شده‌اند. به نظر می‌رسد که پروتئین‌های cement-cone که در فرآیند خون خواری کنه شرکت می‌کنند، دارای خواص تحریک کننده قوی در ایمنی هستند و از اینرو می‌توانند کاندید مناسبی برای ساخت واکسن باشند. هدف: ما پروتئین‌های cement-cone کنه هیالوما آناتولیکوم را به عنوان یک واکسن کاندید علیه آلودگی با هیالوما آناتولیکوم و هیالوما اژیپتیوم در گاو ارزیابی کردیم. روش کار: پروتئین‌های cement-cone از هیالوما آناتولیکوم استخراج شدند تا واکسن واکنش متقاطع ایمنی‌زایی و مرحله واکنشی در برابر آلودگی با دو گونه کنه هیالوما آناتولیکوم و هیالوما اژیپتیوم ایجاد شود. پاسخ ایمنی واکسن علیه پروتئین‌های cement-cone کنه‎های گرسنه، نیمه سیر و سیر مورد آزمایش قرار گرفت. نتایج: یافته‎های مطالعه حاضر نشان داد که بین دو گونه کنه که مربوط به یک جنس (هیالوما) هستند، واکنش متقاطع وجود دارد. شباهت آنتی ژنی بین دو گونه کنه نشان می‌دهد که احتمالا یک آنتی ژن مشترک می‌تواند برای ساخت واکسن علیه دو گونه مختلف کنه مناسب باشد. علاوه بر این، نتایج نشان داد که پروتئین 23 کیلو دالتونی cement cone کنه هیالوما آناتولیکوم و هیالوما اژیپتیوم مسؤول القا، برانگیختن سیستم ایمنی و پاسخ‌های ایمنی واکنش متقاطع و مرحله‌ای معمول میزبان با شدت ثابت در طول مراحل زندگی کنه‌ها هستند. نتیجه‌گیری: واکسن مبتنی بر پروتئین‌های cement-cone کنه ممکن است یک باز دارنده مفید در برابر عفونت‎های منتقل شونده از کنه‌ها در گاوها در کشورهایی مانند پاکستان باشد.

کلیدواژه‌ها


Agbede, R and Kemp, D (1986). Immunization of cattle against Boophilus microplus using extracts derived from adult female ticks: histopathology of ticks feeding on vaccinated cattle. Int. J. Parasitol., 16: 35-41.
Akel, T and Mobarakai, N (2017). Hematologic manifestations of babesiosis. Ann. Clin. Microbiol. Antimicrob., 16: 1-7.
Allen, J (1973). Tick resistance: basophils in skin reactions of resistant guinea pigs. Int. J. Parasitol., 3: 195-200.
Awumbila, B (1996). Acaricides in tick control in Ghana and methods of application. Trop. Anim. Health Prod., 28: 50S-52S.
Balinandi, S; Chitimia-Dobler, L; Grandi, G; Nakayiki, T; Kabasa, W; Bbira, J; Lutwama, JJ; Bakkes, DK; Malmberg, M and Mugisha, L (2020). Morphological and molecular identification of ixodid tick species (Acari: Ixodidae) infesting cattle in Uganda. Parasitol. Res., 119: 2411-2420.
Bedenicki, M; Potocnjak, D; Harapin, I; Radisic, B; Samardzija, M; Kreszinger, M; Zubcic, D; Djuricic, D and Bedrica, L (2014). Haematological and biochemical parameters in the blood of an indigenous Croatian breed-Istrian cattle. Arch. Anim. Breed., 57: 1-7.
Bernard, J; Hutet, E; Paboeuf, F; Randriamparany, T; Holzmuller, P; Lancelot, R; Rodrigues, V; Vial, L and Le Potier, MF (2016). Effect of O. porcinus tick salivary gland extract on the African swine fever virus infection in domestic pig. PLoS One. 11: e0147869.
Bimerew, LG; Demie, T; Eskinder, K; Getachew, A; Bekele, S; Cheneke, W; Sahlemariam, Z; Adisu, W; Asres, Y and Yemane, T (2018). Reference intervals for hematology test parameters from apparently healthy individuals in southwest Ethiopia. SAGE Open Med., 6: 2050312118807626.
Bischof, M (2022). Interactive identification key for the hard ticks (Ixodidae) of the Eastern U.S. [Online]. Accessed May.17.2022, Available: http://us-tick-key.klacto.net.
Bowman, AS and Sauer, J (2004). Tick salivary glands: function, physiology and future. Parasitology. 129: S67-S81.
Bradford, MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
Bullard, R; Allen, P; Chao, CC; Douglas, J; Das, P; Morgan, SE; Ching, WM and Karim, S (2016). Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Amblyomma americanum). Ticks Tick Borne Dis., 7: 880-892.
Canals, A; Oleaga, A; Pérez, R; Domínguez, J; Encinas, A and Sánchez-Vizcaino, J (1990). Evaluation of an enzyme-linked immunosorbent assay to detect specific antibodies in pigs infested with the tick Ornithodoros erraticus (Argasidae). Vet. Parasitol., 37: 145-153.
Chmelař, J; Kotál, J; Kovaříková, A and Kotsyfakis, M (2019). The use of tick salivary proteins as novel therapeutics. Front. Physiol., 10: 812.
De La Fuente, J and Contreras, M (2015). Tick vaccines: current status and future directions. Expert Rev. Vaccines. 14: 1367-1376.
Demma, LJ; Traeger, MS; Nicholson, WL; Paddock, CD; Blau, DM; Eremeeva, ME; Dasch, GA; Levin, ML; Singleton, JJ and Zaki, SR (2005). Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N. Engl. J. Med., 353: 587-594.
Elhachimi, L; Van Leeuwen, T; Dermauw, W; Rogiers, C; Valcárcel, F; Olmeda, AS; Khatat, SE; Daminet, S; Sahibi, H and Duchateau, L (2022). Variation of diazinon and amitraz susceptibility of Hyalomma marginatum (Acari: Ixodidae) in the Rabat-Sale-Kenitra region of Morocco. Ticks Tick Borne Dis., 13: 101883.
Galay, RL; Miyata, T; Umemiya-Shirafuji, R; Maeda, H; Kusakisako, K; Tsuji, N; Mochizuki, M; Fujisaki, K and Tanaka, T (2014). Evaluation and comparison of the potential of two ferritins as anti-tick vaccines against Haemaphysalis longicornis. Parasit. Vectors. 7: 1-10.
Ghosh, S; Khan, M and Gupta, S (1998). Immunization of rabbits against Hyalomma anatolicum using homogenates from unfed immature ticks. Indian J. Exp. Biol., 36: 167-170.
Guglielmone, AA and Robbins, RG (2018). Hard ticks (Acari: Ixodida: Ixodidae) parasitizing humans. Cham: Springer. 230.
Hill, F; Reichel, M; Mccoy, R and Tisdall, D (2007). Evaluation of two commercial enzyme-linked immunosorbent assays for detection of bovine viral diarrhoea virus in serum and skin biopsies of cattle. N. Z. Vet. J., 55:  45-48.
Iqbal, A; Iram, S; Gul, S and Panezai, MA (2016). Analysis of immune response in goats Capra hircus lehri against different doses of cement cone extract antigen taken from ticks (ixodidae) emulsified with different adjuvants. Pak. J. Zool., 48: 1179-1184.
Kaiser, M and Hoogstraal, H (1964). The Hyalomma ticks (Ixodoidea, Ixodidae) of Pakistan, India, and Ceylon, with keys to subgenera and species. Acarologia. 6:  257-286.
Kakar, MN and Kakarsulemankhel, JK (2008). Re-description of Hyalomma anatolicum excavatum Koch, 1844 (Metastigmata: Ixodidae). Pak. Entomol., 30: 141-146.
Kamran, K; Villagra, CA; Iqbal, A; Kakar, A and Schapheer, C (2020). 29-kDa: a potential candidate for anti-tick vaccine antigen source as immunogenic and stage reactive targeting hard-bodied Hyalomma ticks (Ixodidae). Indian J. Anim. Res., 1: 1-7.
Karim, S; Budachetri, K; Mukherjee, N; Williams, J; Kausar, A; Hassan, MJ; Adamson, S; Dowd, SE; Apanskevich, D and Arijo, A (2017). A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl. Trop. Dis., 11: e0005681.
Keirans, JE and Litwak, TR (1989). Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J. Med. Entomol., 26: 435-448.
Knorr, S; Anguita, J; Cortazar, JT; Hajdusek, O; Kopáček, P; Trentelman, JJ; Kershaw, O; Hovius, JW and Nijhof, AM (2018). Preliminary evaluation of tick protein extracts and recombinant ferritin 2 as anti-tick vaccines targeting Ixodes ricinus in cattle. Front. Physiol., 9: 1696.
Laemmli, UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
Lappin, MR; Tasker, S and Roura, X (2020). Role of vector-borne pathogens in the development of fever in cats: 1. Flea-associated diseases. J. Feline Med. Surg., 22: 31-39.
Manjunathachar, HV; Kumar, B; Saravanan, BC; Choudhary, S; Mohanty, AK; Nagar, G; Chigure, G; Ravi Kumar, GV; De La Fuente, J and Ghosh, S (2019). Identification and characterization of vaccine candidates against Hyalomma anatolicum—Vector of Crimean Congo haemorrhagic fever virus. Transbound. Emerg. Dis., 66: 422-434.
Mccarthy, VC (1967). Ixodid ticks (Acarina, Ixodidae) of West Pakistan. University of Maryland, College Park.
Merino, O; Almazán, C; Canales, M; Villar, M; Moreno-Cid, JA; Estrada-Peña, A; Kocan, KM and De La Fuente, J (2011). Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine. 29: 2248-2254.
Mi, K; Ou, X; Guo, L; Ye, J; Wu, J; Yi, S; Niu, X; Sun, X; Li, H and Sun, M (2017). Comparative analysis of the immunogenicity of monovalent and multivalent rotavirus immunogens. PLoS One. 12: e0172156.
Mulenga, A; Sugimoto, C; Sako, Y; Ohashi, K; Musoke, A; Shubash, M and Onuma, M (1999). Molecular characterization of a Haemaphysalis longicornis tick salivary gland-associated 29-kilodalton protein and its effect as a vaccine against tick infestation in rabbits. Infect. Immun., 67: 1652-1658.
Musa, H; Jajere, S; Adamu, N; Atsanda, N; Lawal, J; Adamu, S and Lawal, E (2014). Prevalence of tick infestation in different breeds of cattle in Maiduguri, northeastern Nigeria. B.J.V.M., 12: 161-166.
Neelakanta, G and Sultana, H (2022). Tick saliva and salivary glands: What do we know so far on their role in arthropod blood feeding and pathogen transmission. Front. Cell. Infect. Microbiol., 19: 1430.
Nikpay, A and Nabian, S (2016). Immunization of cattle with tick salivary gland extracts. J. Arthropod-Borne Dis., 10: 281.
Nuttall, P; Trimnell, AR; Kazimirova, M and Labuda, M (2006). Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol., 28: 155-163.
Olds, CL; Mwaura, S; Odongo, DO; Scoles, GA; Bishop, R and Daubenberger, C (2016). Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit. Vectors. 9: 1-11.
Opdebeeck, J; Wong, J; Jackson, L and Dobson, C (1988a). Hereford cattle immunized and protected against Boophilus microplus with soluble and membrane-associated antigens from the midgut of ticks. Parasite Immunol., 10: 405-410.
Opdebeeck, J; Wong, J; Jackson, LA and Dobson, C (1988b). Vaccines to protect Hereford cattle against the cattle tick, Boophilus microplus. Immunology. 63: 363.
Pachec o, I; Prado, E; Artigas-Jerónimo, S; Lima-Barbero, JF; De La Fuente, G; Antunes, S; Couto, J; Domingos, A; Villar, M and De La Fuente, J (2021). Comparative analysis of Rhipicephalus tick salivary gland and cement elementome. Heliyon. 7: e06721.
Rafique, N; Kakar, A; Iqbal, A; Masood, Z and Razzaq, W (2015). Identification of three species of ticks Hyalomma anatolicum anatolicum, Hyalomma aegyptium and Dermacenter andersoni in Quetta City of Balochistan, Pakistan. Glob. Vet., 14: 842-847.
Ramzan, M; Naeem-Ullah, U; Saba, S; Iqbal, N and Saeed, S (2020). Prevalence and identification of tick species (Ixodidae) on domestic animals in district Multan, Punjab Pakistan. Int. J. Acarol., 46: 83-87.
Rego, RO; Trentelman, JJ; Anguita, J; Nijhof, AM; Sprong, H; Klempa, B; Hajdusek, O; Tomás-Cortázar, J; Azagi, T and Strnad, M (2019). Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit. Vectors. 12: 1-20.
Retamal, CA; Thiebaut, P and Alves, EW (1999). Protein purification from polyacrylamide gels by sonication extraction. Anal. Biochem., 268: 15-20.
Ribeiro, JM and Francischetti, IM (2003). Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol., 48: 73-88.
Rodriguez, M; Penichet, M; Mouris, A; Labarta, V; Luaces, LL; Rubiera, R; Cordoves, C; Sanchez, P; Ramos, E and Soto, A (1995). Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. Vet. Parasitol., 57: 339-349.
Rodríguez, Y; Rojas, M; Gershwin, ME and Anaya, JM (2018). Tick-borne diseases and autoimmunity: A comprehensive review. J. Autoimmun., 88: 21-42.
Rodríguez-Mallon, A (2016). Developing anti-tick vaccines. In Vaccine design. Humana, New York, USA, Springer. PP: 243-259.
Roy, B; Krücken, J; Ahmed, J; Majumder, S; Baumann, M; Clausen, PH and Nijhof, A (2018). Molecular identification of tick-borne pathogens infecting cattle in Mymensingh district of Bangladesh reveals emerging species of Anaplasma and Babesia. Transbound. Emerg. Dis., 65: 231-242.
Rubaire-Akiki, C and Mutinga, M (1980). Immunological reactions associated with rabbit resistance to Rhipicephalus appendiculatus (Neumann) infestations. Bull. Anim. Health Prod. Afr., 28: 49-59.
Sattar, A and Mirza, R (2009). Haematological parameters in exotic cows during gestation and lactation under subtropical conditions. Pak. Vet. J., 29: 129-132.
Schetters, T; Bishop, R; Crampton, M; Kopáček, P; Lew-Tabor, A; Maritz-Olivier, C; Miller, R; Mosqueda, J;
Patarroyo, J and Rodriguez-Valle, M
(2016). Cattle tick vaccine researchers join forces in CATVAC. Bio. Med. Central. 105: 1-7.
Šimo, L; Kazimirova, M; Richardson, J and Bonnet, SI (2017). The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol., 7: 281.
Sonenshine, DE and Roe, R (2014). Biology of ticks. New York, USA, Oxford University Press.
Tatchell, R and Moorhouse, D (1968). The feeding processes of the cattle tick Boophilus microplus (Canestrini): Part II. The sequence of host-tissue changes. Parasitology. 58: 441-459.
Tirloni, L; Islam, MS; Kim, TK; Diedrich, JK; Yates, JR; Pinto, AF; Mulenga, A; You, MJ and Vaz, IDS (2015). Saliva from nymph and adult females of Haemaphysalis longicornis: a proteomic study. Parasit. Vectors. 8: 1-23.
Towbin, H; Staehelin, T and Gordon, J (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci., 76: 4350-4354.
Trentelman, JJ; Kleuskens, JA; Van De Crommert, J and Schetters, TP (2017). A new method for in vitro feeding of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae: a valuable tool for tick vaccine development. Parasit. Vectors. 10: 1-9.
Valenzuela, J (2004). Exploring tick saliva: from biochemistry to ‘sialomes’ and functional genomics. Parasitology. 129: S83-S94.
Valle, MR and Guerrero, FD (2018). Anti-tick vaccines in the omics era. Front. Biosci., 10: 122-136.
Waladde, S and Gichuhi, P (1991). Artificial-membrane feeding of the ixodid tick, Rhipicephalus appendiculatus, to repletion. Exp. Appl. Acarol., 11: 297-306.
Walker, D; Radisch, D and Kirkman, H (1983). Haemolysis with rickettsiosis and glucose-6-phosphate dehydrogenase deficiency. Lancet. 322: 217.
Walker, D; Tidwell, R; Rector, T and Geratz, J (1984). Effect of synthetic protease inhibitors of the amidine type on cell injury by Rickettsia rickettsii. Antimicrob. Agents Chemother., 25: 582-585.
Wikel, SK (1999). Tick modulation of host immunity: an important factor in pathogen transmission. Int. J. Parasitol., 29: 851-859.
Wikel, SK (2018). Ticks and tick-borne infections: complex ecology, agents, and host interactions. Vet. Sci., 5: 60.