ارزیابی مقایسه‌ای روش‌های مختلف تشخیصی برای شناسایی عفونت با کریپتوسپوریدیوم در نمونه‌های مدفوع گوساله‌های مبتلا به اسهال

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: کریپتوسپوریدیوم یک انگل فرصت طلب، مشترک بین انسان و دام، آپی کمپلکس و یکی از شایع‌ترین علل اسهال در گوساله‌های تازه متولد شده در سراسر جهان است. گوساله‌ها با دفع تعداد زیادی اووسیست بسیار مقاوم در مدفوع که می‌توانند برای مدت طولانی در شرایط محیطی سخت زنده بمانند، به عنوان منبع اصلی عفونت عمل می‌کنند. کمتر از 10 اووسیست می‌تواند سبب مرگ و میر و بیماری شود که این مسئله نیاز به تشخیص زود هنگام و دقیق را برای پیش آگهی، مدیریت و کنترل مناسب و مطلوب حائز اهمیت می‌کند. هدف: مطالعه حاضر با هدف ارزیابی تکنیک‌های تشخیصی مختلف (اسید فست، رنگ آمیزی منفی، فلئورسنت، ELISA، PCR، nested PCR و qPCR) برای تشخیص کریپتوسپوریدیوم در نمونه‌های مدفوع گوساله‌های مبتلا به اسهال انجام شد. روش کار: دویست نمونه مدفوع اسهالی از گوساله‌ها جمع آوری شدند و برای تشخیص کریپتوسپوریدیوم تحت این تکنیک‌ها قرار گرفتند. نتایج این موارد برای مقایسه تشخیصی مورد ارزیابی قرار گرفت. نتایج: از 200 نمونه مدفوع ارزیابی شده، 24% (200/48) با استفاده از ترکیبی از دو تکنیک به عنوان معیارهای استاندارد طلایی، برای کریپتوسپوریدیوم مثبت تشخیص داده شدند. مقدار کاپای کوهن، نشان دهنده تطابق متوسط تا تقریبا کامل (616/0 تا 986/0) در بین تمامی تکنیک‌های مورد استفاده در مطالعه حاضر بود. رنگ آمیزی لیشمن کمترین (17/54%) و PCR و qPCR بیشترین حساسسیت (92/97%) را نشان دادند. ویژگی تشخیصی همه این تست‌ها بین 65/98 تا 100% درصد بود. نتیجه‌گیری: رنگ Auramine که برای اولین بار در هند برای تشخیص و مقایسه تشخیصی کریپتوسپوریدیوم در گوساله‌ها استفاده شد. این تطابق قوی‌ای با تکنیک‌های تشخیصی مولکولی و همچنین تکنیک‌های تشخیصی کلاسیک نشان داد و می‌تواند برای غربالگری اولیه برای تشخیص بهتر مورد استفاده قرار گیرد.

کلیدواژه‌ها


Aghamolaie, S; Rostami, A; Fallahi, S; Tahvildar Biderouni, F; Haghighi, A and Salehi, N (2014). Evaluation of modified Ziehl-Neelsen, direct fluorescent-antibody and PCR assay for detection of Cryptosporidium spp. in children faecal specimens. J. Parasitol., 40: 958-963. https://doi.org/10.1007/s12639-014-0614-4.
Ahmed, SA and Karanis, P (2018). Comparison of current methods used to detect Cryptosporidium oocysts in stools. Int. J. Hyg. Environ. Health. 221: 743-763. https://doi.org/ 10.1016/j.ijheh.2018.04.006.
Bhat, SA; Dixit, M; Juyal, PD and Singh, NK (2014). Comparison of nested PCR and microscopy for the detection of cryptosporidiosis in bovine calves. J. Parasit. Dis., 38: 101-105. https://doi.org/10.1007/s12639-012-0201-5.
Blanchard, PC (2012). Diagnostics of dairy and beef cattle diarrhea. Vet. Clin. North. Am. Food Anim. Pract., 28: 443-464. https://doi.org/10.1016/j.cvfa.2012.07.002.
Brankston, G; Boughen, C; Ng, V; Fisman, DN; Sargeant, JM and Greer, AL (2018). Assessing the impact of environmental exposures and Cryptosporidium infection in cattle on human incidence of cryptosporidiosis in Southwestern Ontario, Canada. PLoS One. 13: e0196573. https://doi.org/10.1371/journal.pone.0196573.
Brar, A; Sood, NK; Kaur, P; Singla, LD; Sandhu, BS; Gupta, K; Narang, D; Singh, CK and Chandra, M (2017b). Periurban outbreaks of bovine calf scours in Northern India caused by Cryptosporidium in association with other enteropathogens. Epidemiol. Infect., 145: 2717-2726. https://doi.org/10.1017/S0950268817001224.
Brar, APS; Sood, NK; Singla, LD; Kaur, P; Gupta, K and Sandhu, BS (2017a). Validation of Romanowsky staining as a novel screening test for the detection of faecal cryptosporidial oocysts. J. Parasit. Dis., 41: 260-262. https://doi.org/10.1007/s12639-016-0788-z.
Chalmers, RM; Campbell, BM; Crouch, N; Charlett, A and Davies, AP (2011). Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the U.K. J. Med. Microbiol., 60: 1598-1604. https://doi.org/10. 1099/jmm.0.034181-0.
Danišová, O; Halánová, M; Valenčáková, A and Luptáková, L (2018). Sensitivity, specificity and comparison of three commercially available immunological tests in the diagnosis of Cryptosporidium species in animals. Braz. J. Microbiol., 49: 177-183. https://doi.org/ 10.1016/j.bjm.2017.03.016.
Das, K; Nair, LV; Ghosal, A; Sardar, SK; Dutta, S and Ganguly, S (2019). Genetic characterization reveals evidence for an association between water contamination and zoonotic transmission of a Cryptosporidium sp. from dairy cattle in West Bengal, India. Food. Waterborne Parasitol., 17: e00064. https://doi.org/10.1016/j.fawpar. 2019.e00064.
Díaz, P; Varcasia, A; Pipia, AP; Tamponi, C; Sanna, G; Prieto, A; Ruiu, A; Spissu, P; Díez-Baños, P; Morrondo, P and Scala, A (2018). Molecular characterisation and risk factor analysis of Cryptosporidium spp. in calves from Italy. Parasitol. Res., 117: 3081-3090. https://doi.org/10. 1007/s00436-018-6000-x.
Dzodanu, EG; Afrifa, J; Acheampong, DO and Dadzie, I (2019). Diagnostic yield of fluorescence and Ziehl-Neelsen staining techniques in the diagnosis of pulmonary tuberculosis: a comparative study in a district health facility. Tuberc. Res. Treat., 2019, 4091937. https://doi.org/ 10.1155/2019/4091937.
Elsafi, SH; Al-Sheban, SS; Al-Jubran, KM; Abu Hassan, MM and Al Zahrani, EM (2014). Comparison of Kinyoun’s acid-fast and immunofluorescent methods detected an unprecedented occurrence of Cryptosporidium in the Eastern Region of Saudi Arabia. J. Taibah. Univ. Sci., 9: 263-267. https://doi.org/10.1016/j.jtumed.2014.03. 008.
Feng, Y; Ortega, Y; He, G; Das, P; Xu, M; Zhang, X; Fayer, R; Gatei, W; Cama, V and Xiao, L (2007). Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet. Parasitol., 144: 1-9. https://doi.org/10.1016/j.vetpar.2006.10.001.
Ghaffari, S and Kalantari, N (2014). Recognition of Cryptosporidium oocysts in fresh and old stool samples: comparison of four techniques. Asian Pac. J. Trop. Biomed., 4: S570-S574. https://doi.org/10.12980/apjtb.4. 2014apjtb-2014-0067.
Ghoshal, U; Jain, V; Dey, A and Ranjan, P (2018). Evaluation of enzyme linked immunosorbent assay for stool antigen detection for the diagnosis of cryptosporidiosis among H.I.V. negative immuno-compromised patients in a tertiary care hospital of northern India. J. Infect. Public Health. 11: 115-119. https://doi.org/ 10.1016/j.jiph.2017.06.007.
Guy, RA; Yanta, CA; Muchaal, PK; Rankin, MA; Thivierge, K; Lau, R and Boggild, AK (2021). Molecular characterization of Cryptosporidium isolates from humans in Ontario, Canada. Parasit. Vectors. 14: 69. https://doi.org/ 10.1186/s13071-020-04546-9.
Hassan, EM; Örmeci, B; DeRosa, MC; Dixon, BR; Sattar, SA and Iqbal, A (2021). A review of Cryptosporidium spp. and their detection in water. Water Sci. Technol., 83: 1-25. https://doi.org/10.2166/wst.2020.515.
Henriksen, S and Pohlenz, J (1981). Staining of cryptosporidial by a modified Ziehl-Neelsen technique. Acta Vet. Scand., 22: 594-596.
Hingole, AC; Gudewar, JG; Pednekar, RP and Gatne, ML (2017). Prevalence and molecular characterization of Cryptosporidium species in cattle and buffalo calves in Mumbai region of India. J. Parasit. Dis., 41: 131-136. https://doi.org/10.1007/s12639-016-0763-8.
Izzo, M; Kirkland, P; Gu, X; Lele, Y; Gunn, A and House, J (2012). Comparison of three diagnostic techniques for detection of rotavirus and coronavirus in calf faeces in Australia. Aust. Vet. J., 90: 122-129. https://doi.org/10. 1111/j.1751-0813.2011.00891.x.
Jayalakshmi, J; Appalaraju, B and Mahadevan, K (2008). Evaluation of an enzyme-linked immunoassay for the detection of Cryptosporidium antigen in fecal specimens of HIV/AIDS patients. Indian. J. Pathol. Microbiol., 51: 137-138. https://doi.org/10.4103/0377-4929.40427.
Johnson, DW; Pieniazek, N; Griffin, DW; Misener, L and Rose, JB (995). Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl. Environ. Microbiol., 61: 3849-3855. https://doi.org/10.1128/aem.61.11.3849-3855.1995.
Joute, JR; Gill, J and Singh, BB (2016). Prevalence and molecular epidemiology of Cryptosporidium parvum in dairy calves in Punjab (India). J. Parasit. Dis., 40: 745-749. https://doi.org/10.1007/s12639-014-0571-y.
Kabir, M; Ceylan, O; Ceylan, C; Shehata, AA; Bando, H; Essa, MI; Xuan, X; Sevinc, F and Kato, K (2020). Molecular detection of genotypes and subtypes of Cryptosporidium infection in diarrheic calves, lambs, and goat kids from Turkey. Parasitol. Int., 79: 102163. https://doi.org/10.1016/j.parint.2020.102163.
Kaushik, K; Khurana, S; Wanchu, A and Malla, N (2008). Evaluation of staining techniques, antigen detection and nested PCR for the diagnosis of cryptosporidiosis in HIV seropositive and seronegative patients. Acta Trop., 107: 1-7. https://doi.org/10.1016/j.actatropica.2008.02.007.
Khan, SM; Debnath, C; Pramanik, AK; Xiao, L; Nozaki, T and Ganguly, S (2010). Molecular characterization and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India. Vet. Parasitol., 171: 41-47. https://doi.org/10.1016/j.vetpar.2010.03.008.
Khurana, S; Sharma, P; Sharma, A and Malla, N (2012). Evaluation of Ziehl-Neelsen staining, auramine phenol staining, antigen detection enzyme linked immunosorbent assay and polymerase chain reaction, for the diagnosis of intestinal cryptosporidiosis. Trop. Parasitol., 2: 20-23. https://doi.org/10.4103/2229-5070.97234.
Kumar, A; Goyal, R; Kumar, A and Singh, P (2014). Comparative evaluation of microscopy and antigen detection for Cryptosporidium by ELISA in patients with immunocompromised status. IOSR-JDMS. 13: 4-8.
Mahmoudi, M; Tapeh, KH; Abasi, E; Sayyadi, H and Aminpour, A (2021). Prevalence and genetic characterization of Cryptosporidium in pre-weaned cattle in Urmia (Northwestern Iran). J. Infect. Dev. Ctries., 15: 422-427. https://doi.org/10.3855/jidc.12122.
Manouana, GP; Lorenz, E; Mbong, M; Nguema Moure, PA; Maiga Ascofaré, O; Akenten, CW; Amuasi, J; Rakotozandrindrainy, N; Rakotozandrindrainy, R; Mbwana, J; Lusingu, J; Byrne, N; Melhem, S; Zinsou, JF; Adegbite, RB; Hogan, B; Winter, D; May, J; Kremsner, PG; Borrmann, S; Eibach, D and Adegnika, AA (2020). Performance of a rapid diagnostic test for the detection of Cryptosporidium spp. in African children admitted to hospital with diarrhea. PLoS Negl. Trop. Dis., 14: e0008448. https://doi.org/10.1371/journal.pntd. 0008448.
Mayer, CL and Palmer, CJ (1996). Evaluation of PCR, nested PCR, and fluorescent antibodies for detection of Giardia and Cryptosporidium species in wastewater. Appl. Environ. Microbiol., 62: 2081-2085. https://doi.org/10. 1128/aem.62.6.2081-2085.1996.
McHugh, ML (2012). Interrater reliability: the kappa statistic. Biochemia. Medica. 22: 276-282.
Morgan, UM; Pallant, L; Dwyer, BW; Forbes, DA; Rich, G and Thompson, RC (1998). Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J. Clin. Microbiol., 36: 995-998. https://doi.org/10.1128/JCM.36.4.995-998. 1998.
Newman, RD; Jaeger, KL; Wuhib, T; Lima, AA; Guerrant, RL and Sears, CL (1993). Evaluation of an antigen capture enzyme-linked immunosorbent assay for detection of Cryptosporidium oocysts. J. Clin. Microbiol., 31: 2080-2084. https://doi.org/10.1128/jcm.31.8.2080-2084.1993.
Ninama, A (2018). Detection of Cryptosporidium in fecal sample by three staining method from immuno-compromised patients. Int. J. Med. Microbiol. Trop. Dis., 4: 257-260. https://doi.org/10.18231/2581-4761.2018.0055.
Ouakli, N; Belkhiri, A; de Lucio, A; Köster, PC; Djoudi, M; Dadda, A; Khelef, D; Kaidi, R and Carmena, D (2018). Cryptosporidium-associated diarrhoea in neonatal calves in Algeria. Vet. Parasitol. Reg. Stud. Reports. 12: 78-84. https://doi.org/10.1016/j.vprsr.2018.02.005.
Papini, R; Bonelli, F; Montagnani, M and Sgorbini, M (2018). Evaluation of three commercial rapid kits to detect Cryptosporidium parvum in diarrhoeic calf stool. Ital. J. Anim. Sci., 17: 1059-1064. https://doi.org/10.1080/ 1828051x.2018.1452055.
Paul, S; Chandra, D; Ray, DD; Tewari, AK; Rao, JR; Banerjee, PS; Baidya, S and Raina, OK (2008). Prevalence and molecular characterization of bovine Cryptosporidium isolates in India. Vet. Parasitol., 153: 143-146. https://doi.org/10.1016/j.vetpar.2008.01.044.
Paul, S; Chandra, D; Tewari, AK; Banerjee, PS; Ray, DD; Boral, R and Rao, JR (2009). Comparative evaluation and economic assessment of coprological diagnostic methods and PCR for detection of Cryptosporidium spp. in bovines. Vet. Parasitol., 164: 291-295. https://doi.org/10.1016/j. vetpar.2009.06.015.
Rekha, KM; Puttalakshmamma, GC and D’Souza, PE (2016). Comparison of different diagnostic techniques for the detection of cryptosporidiosis in bovines. Vet. World. 9: 211-215. https://doi.org/10.14202/vetworld.2016.211-215.
Ryan, U; Hijjawi, N and Xiao, L (2018). Foodborne cryptosporidiosis. Int. J. Parasitol., 48: 1-12. https://doi.org/ 10.1016/j.ijpara.2017.09.004.
Santin, M (2020). Cryptosporidium and Giardia in ruminants. Vet. Clin. North. Am. Food Anim. Pract., 36: 223-238. https://doi.org/10.1016/j.cvfa.2019.11.005.
Santín, M; Trout, JM; Xiao, L; Zhou, L; Greiner, E and Fayer, R (2004). Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Vet. Parasitol., 122: 103-117. doi: 10.1016/j.vetpar.2004. 03.020.
Shams, S; Abdul, Z; Khan, W and Campus, UCSS (2016). Differential techniques used for detection of Cryptosporidium oocysts in stool specimens. J. Parasit. Dis., 1: 1-11.
Shrivastava, AK; Kumar, S; Smith, WA and Sahu, PS (2017). Revisiting the global problem of cryptosporidiosis and recommendations. Trop. Parasitol., 7: 8-17. https://doi. org/10.4103/2229-5070.202290.
Singh, BB; Sharma, R; Kumar, H; Banga, HS; Aulakh, RS; Gill, JPS and Sharma, JK (2006). Prevalence of Cryptosporidium parvum infection in Punjab (India) and its association with diarrhea in neonatal dairy calves. Vet. Parasitol., 140: 162-165. https://doi.org/10.1016/j.vetpar. 2006.03.029.
Tanriverdi, S; Tanyeli, A; Başlamişli, F; Köksal, F; Kilinç, Y; Feng, X; Batzer, G; Tzipori, S and Widmer, G (2002). Detection and genotyping of oocysts of Cryptosporidium parvum by real-time PCR and melting curve analysis. J. Clin. Microbiol., 40: 3237-3244. https://doi.org/10.1128/JCM.40.9.3237-3244.2002.
Thomson, S; Hamilton, CA; Hope, JC; Katzer, F; Mabbott, NA; Morrison, LJ and Innes, EA (2017). Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet. Res., 48: 42. https://doi.org/10.
1186/s13567-017-0447-0.
Toledo, RDS; Martins, FDC and Freire, RL (2017). Waterborne Giardia and Cryptosporidium: contamination of human drinking water by sewage and cattle feces. Semin. Agrar., 38: 3395-3415. https://doi.org/10.5433/ 1679-0359.2017v38n5p3395.
Trotz-Williams, LA; Jarvie, BD; Martin, SW; Leslie, KE and Peregrine, AS (2005). Prevalence of Cryptosporidium parvum infection in southwestern Ontario and its association with diarrhea in neonatal dairy calves. Can. Vet. J., 46: 349-351.
Vejdani, M; Mansour, R; Hamzavi, Y; Vejdani, S; Nazeri, N and Michaeli, A (2014). Immunofluorescence assay and PCR analysis of Cryptosporidium oocysts and species from human fecal specimens. Jundishapur J. Microbiol., 7: e10284. https://doi.org/10.5812/jjm.10284.
Venu, R; Latha, BR; Basith, SA; Raj, GD; Sreekumar, C and Raman, M (2012). Molecular prevalence of Cryptosporidium spp. in dairy calves in Southern states of India. Vet. Parasitol., 188: 19-24. https://doi.org/10.1016/j. vetpar.2012.02.025.
Vermeulen, LC; Benders, J; Medema, G and Hofstra, N (2017). Global Cryptosporidium loads from livestock manure. Environ. Sci. Technol., 51: 8663-8671. https://doi.org/10.1021/acs.est.7b00452.
Vohra, P; Sharma, M and Chaudhary, U (2012). A comprehensive review of diagnostic techniques for detection of Cryptosporidium parvum in stool samples. IOSR. J. Pharm., 2: 15-26.
Wang, R; Zhao, G; Gong, Y and Zhang, L (2017). Advances and perspectives on the epidemiology of bovine Cryptosporidium in China in the past 30 years. Front. Microbiol., 8: 1823. https://doi.org/10.3389/fmicb.2017. 01823.
Wells, B; Paton, C; Bacchetti, R; Shaw, H; Stewart, W; Plowman, J; Katzer, F and Innes, EA (2019). Cryptosporidium prevalence in calves and geese co-grazing on four livestock farms surrounding two reservoirs supplying public water to Mainland Orkney, Scotland. Microorganisms. 7: 513. https://doi.org/10.3390/ microorganisms7110513.
Xiao, L (2010). Molecular epidemiology of cryptosporidiosis: an update. Exp. Parasitol., 124: 80-89. https://doi.org/10. 1016/j.exppara.2009.03.018.
Xiao, L; Fayer, RL; Ryan, UL and Upton, SJ (2004). Cryptosporidium taxonomy: recent advances and implications for public health. Clin. Microbiol. Rev., 17: 72-97. https://doi.org/10.1128/cmr.17.1.72-97.2004.
Yildirim, A; Adanir, R; Inci, A; Yukari, BA; Duzlu, O; Onder, Z; Ondera, Z; Ciloglua, A and Simsek, E (2020). Prevalence and genotyping of bovine Cryptosporidium species in the Mediterranean and Central Anatolia Region of Turkey. Comp. Immunol. Microbiol. Infect. Dis., 69: 101425. https://doi.org/10.1016/j.cimid.2020.101425.
Yimer, M; Gezhagne, M; Biruk, T and Dinaol, B (2015). A review on major bacterial causes of calf diarrhea and its diagnostic method. J. Vet. Med. Anim. Health. 7: 173-185. https://doi.org/10.5897/JVMAH2014.0351.
Yu, JR; Lee, SU and Park, WY (2009). Comparative sensitivity of PCR primer sets for detection of Cryptosporidium parvum. Korean J. Parasitol., 47: 293-297. https://doi.org/10.3347/kjp.2009.47.3.293.