بررسی شیوع و خصوصیات مولکولی اشریشیا کلی تولید کننده بتالاکتاماز وسیع طیف (ESBL) جدا شده از سگ‌های مبتلا به اسهال در کلکته و اطراف آن

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: سگ‌ها حیوانات همراه مورد علاقه در بین انسان‌ها هستند. تماس نزدیک بین سگ‌ها و انسان‌ها خطر گسترش مقاومت آنتی بیوتیکی را افزایش می‌دهد. نظارت بر مقاومت ضد میکروبی و همچنین شناسایی اشریشیا کلی تولید کننده ESBL به عنوان یک باکتری شاخص، ابزار مهمی برای مدیریت درمان دارویی ضد میکروبی است. هدف: مطالعه حاضر با هدف شناسایی اشریشیا کلی تولید کننده ESBL در بین سگ‌های مبتلا به اسهال در کلکته و اطراف آن انجام شد. روش کار: جداسازی و شناسایی اشریشیا کلی از سگ‌های مبتلا به اسهال (70=n)، همراه با غربالگری برای تولید ESBL و AmpC. جدایه‌ها سپس از طریق بررسی پروفایل مقاومت ضد میکروبی، غربالگری ژن‌های مقاومت         blaCTX-M, blaTEM) (blaSHV, و مطالعه گروه فیلوژنتیک، مورد ارزیابی قرار گرفتند. نتایج: در بین 70 جدایه، 21 (30%) مورد به عنوان تولید کننده ESBL تایید شدند. طبقه‌بندی اشریشیا کلی‌های تولید کننده ESBL بر اساس آنتی بیوگرام نشان داد که اکثر آن‌ها به نورفلوکساسین (7/85%) و به دنبال آن به تتراسیکلین (90/61%)، داکسی سایکلین (14/57%)، پیپراسیلین/تازوباکتام (38/52%)، کوتریموکسازول (62/47%)، جنتامایسین (62/42%)، آمیکاسین (81/23%) و کلرامفنیکل (05/19%) مقاوم بودند. ژن‌های مقاومت عمدتا شامل blaCTX-M (100%) و به دنبال آن blaTEM (57/28%) و blaSHV (50/9%) بودند. فیلوگروپ A (76%) و سپس فیلوگروپ D (24%) گروه فیلوژنتیک غالب بودند. نتیجه‌گیری: مطالعه حاضر، شیوع بالایی از اشریشیا کلی تولید کننده ESBL و بتالاکتاماز AmpC، مقاومت همزمان به گروه مشخصی از آنتی بیوتیک‌ها و وجود همزمان ژن‌های مختلف ESBL در سگ‌ها را گزارش کرد. یافته‌های ما بر اهمیت روش‌های تشخیص حساسیت ضد میکروبی برای درمان ضد میکروبی مناسب و همچنین جلوگیری از گسترش مقاومت ضد میکروبی به انسان از سگ‌ها در کلکته و اطراف آن تاکید می‌کند.

کلیدواژه‌ها


Abram, K; Udaondo, Z; Bleker, C; Wanchai, V; Wassenaar, TM; Robeson, MS and Ussery, DW (2021). Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun. Biol., 4: 1-2.
Andrews, J (2012). Detection of extended-spectrum beta-lactamases (ESBLs) in E. coli and Klebsiella species. British Society for Antimicrobial Chemotherapy. http://bsac.org.uk/wp-content/uploads/2012/02/Ecoliklebsie lla.pdf.
Babic, M; Hujer, AM and Bonomo, RA (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug. Resist. Updat., 9: 142-156.
Bhattacharjee, A; Sen, MR; Anupurba, S; Prakash, P and Nath, G (2007). Detection of OXA-2 group extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli from India. J. Antimicrob. Chemother., 60: 703-704.
Birgy, A; Mariani-Kurkdjian, P; Bidet, P; Doit, C; Genel, N; Courroux, C; Arlet, G and Bingen, E (2013). Characterization of extended-spectrum-beta-lactamase-producing Escherichia coli strains involved in maternal-fetal colonization: prevalence of E. coli ST131. J. Clin. Microbiol., 51: 1727-1732.
Branger, C; Zamfir, O; Geoffroy, S; Laurans, G; Arlet, G; Thien, HV; Gouriou, S; Picard, B and Denamur, E (2005). Genetic background of Escherichia coli and extended-spectrum β-lactamase type. Emerg. Infect. Dis., 11: 54-61.
Cantón, R and Coque, TM (2006). The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol., 9: 466-475.
Chakraborty, A; Adhikari, P; Shenoy, S and Saralaya, V (2014). Characterization of plasmid mediated AmpC producing Escherichia coli clinical isolates from a tertiary care hospital in South India. Indian J. Pathol. Microbiol., 57: 255-258.
Chong, Y; Ito, Y and Kamimura, T (2011). Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol., 11: 1499-1504.
Ciesielczuk, H; Hornsey, M; Choi, V; Woodford, N and Wareham, DW (2013). Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J. Med. Microbiol., 62: 1823-1827.
Clermont, O; Bonacorsi, S and Bingen, E (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol., 66: 4555-4558.
Clinical Laboratory Standards Institute (CLSI) (2014). Performance standards for antimicrobial susceptibility testing; Twenty-Fourth Informational Supplement. Clinical and Laboratory Standard Institute, Wayne, PA, CLSI document 2014; M100-S124.
Dahms, C; Hübner, NO; Kossow, A; Mellmann, A; Dittmann, K and Kramer, A (2015). Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLoS One. 10: e0143326.
Dallenne, C; Da Costa, A; Decre, D; Favier, C and Arlet, G (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother., 65: 490-495.
Damborg, P; Broens, EM; Chomel, BB; Guenther, S; Pasmans, F; Wagenaar, JA; Weese, JS; Wieler, LH; Windahl, U; Vanrompay, D and Guardabassi, L (2016). Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy actions. J. Comp. Pathol., 155: S27-S40.
Day, MJ; Hopkins, KL; Wareham, DW; Toleman, MA; Elviss, N; Randall, L; Teale, C; Cleary, P; Wiuff, C; Doumith, M and Ellington, MJ (2019). Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and food chain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect. Dis., 19: 1325-1335.
Deepthi, B; Srivani, M; Ramani Pushpa, RN and Chaitanya, Y (2020). Detection of extended spectrum beta-lactamase (ESBL) producing Escherichia coli in companion dogs. J. Pharm. Innov., 9: 189-194.
Dobrindt, U (2005). (Patho-) genomics of Escherichia coli. Int. J. Med. Microbiol. Suppl., 295: 357-371.
Džidić, S; Šušković, J and Kos, B (2008). Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol. Biotechnol., 46: 11-21.
Ewers, C; Bethe, A; Semmler, T; Guenther, S and Wieler, LH (2012). Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin. Microbiol. Infect., 18: 646-655.
Ewers, C; Grobbel, M; Bethe, A; Wieler, LH and Guenther, S (2011). Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted. Berl. Munch. Tierarztl. Wochenschr., 124: 94-101.
Goldstein, RE; Micallef, SA; Gibbs, SG; He, X; George, A; Sapkota, A; Joseph, SW and Sapkota, AR (2012). Methicillin-resistant Staphylococcus aureus (MRSA) detected at four U.S. wastewater treatment plants. Environ. Health Perspect., 120: 1551-1558.
Haenni, M; de Moraes, NA; Châtre, P; Médaille, C; Moodley, A and Madec, JY (2014). Characterisation of clinical canine meticillin-resistant and meticillin-susceptible Staphylococcus pseudintermedius in France. J. Glob. Antimicrob. Resist., 2: 119-123.
Hasman, H; Mevius, D; Veldman, K; Olesen, I and Aarestrup, FM (2005). β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother., 56: 115-121.
Holten, KB and Onusko, EM (2000). Appropriate prescribing of oral beta-lactam antibiotics. Am. Fam. Physician., 62: 611-620.
Hordijk, J; Schoormans, A; Kwakernaak, M; Duim, B; Broens, E; Dierikx, C; Mevius, D and Wagenaar, JA (2013). High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol., 4: 242 (1-5).
Huber, H; Zweifel, C; Wittenbrink, MM and Stephan, R (2013). ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet. Microbiol., 162: 992-996.
Jacoby, GA (2009). AmpC β-Lactamases. Clin. Microbiol. Rev., 22: 161-182.
Johnson, JR; Delavari, P; Kuskowski, M and Stell, AL (2001). Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J. Infect. Dis., 183: 78-88.
Johnson, JR; Kaster, N; Kuskowski, MA and Ling, GV (2003). Identification of urovirulence traits in Escherichia coli by comparison of urinary and rectal E. coli isolates from dogs with urinary tract infection. J. Clin. Microbiol., 41: 337-345.
Johnson, JR and Stell, AL (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis., 181: 261-272.
Kar, D; Bandyopadhyay, S; Bhattacharyya, D; Samanta, I; Mahanti, A; Nanda, PK; Mondal, B; Dandapat, P; Das, AK; Dutta, TK and Bandyopadhyay, S (2015). Molecular and phylogenetic characterization of multidrug resistant extended spectrum beta-lactamase producing Escherichia coli isolated from poultry and cattle in Odisha, India. Infect. Genet. Evol., 29: 82-90.
Kuenzli, E (2016). Antibiotic resistance and international travel: Causes and consequences. Travel Med. Infect. Dis., 14: 595-598.
Laxminarayan, R; Duse, A; Wattal, C; Zaidi, AK; Wertheim, HF; Sumpradit, N; Vlieghe, E; Hara, GL; Gould, IM; Goossens, H and Greko, C (2013). Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 13: 1057-1098.
Ljungquist, O; Ljungquist, D; Myrenås, M; Rydén, C; Finn, M and Bengtsson, B (2016). Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs-a pilot study. Infect. Ecol. Epidemiol., 6: 31514 (1-7).
Machado, E; Cantón, R; Baquero, F; Galán, JC; Rollán, A; Peixe, L and Coque, TM (2005). Integron content of extended-spectrum-β-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob. Agents Chemother., 49: 1823-1829.
Matloko, K; Fri, J; Ateba, TP; Molale-Tom, LG and Ateba, CN (2021). Evidence of potentially unrelated AmpC beta-lactamase producing Enterobacteriaceae from cattle, cattle products and hospital environments commonly harboring the bla ACC resistance determinant. PLoS One. 16: e0253647.
Mohmid, EA; El-Sayed, ESA and El-Haliem, MFA (2013). Molecular study on extended spectrum-lactamase-producing Gram negative bacteria isolated from Ahmadi hospital in Kuwait. Afr. J. Biotechnol., 12: 5040-5053.
Molina, F; López-Acedo, E; Tabla, R; Roa, I; Gómez, A and Rebollo, JE (2015). Improved detection of Escherichia coli and coliform bacteria by multiplex PCR. BMC Biotechnol., 15: 48 (1-9).
Ng, LK; Martin, I; Alfa, M and Mulvey, M (2001). Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes. 15: 209-215.
Normand, EH; Gibson, NR; Carmichael, S; Reid, SW and Taylor, DJ (2000). Trends of antimicrobial resistance in bacterial isolates from a small animal referral hospital. Vet. Rec., 146: 151-155.
Nowrouzian, FL; Clermont, O; Edin, M; Östblom, A; Denamur, E; Wold, AE and Adlerberth, I (2019). Escherichia coli B2 phylogenetic subgroups in the infant gut microbiota: predominance of uropathogenic lineages in Swedish infants and enteropathogenic lineages in Pakistani infants. Appl. Environ. Microbiol., 85: e01681-19.
O’Keefe, A; Hutton, TA; Schifferli, DM and Rankin, SC (2010). First detection of CTX-M and SHV extended-spectrum β-lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob. Agents Chemother., 54: 3489-3492.
Ovejero, CM; Delgado-Blas, JF; Calero-Caceres, W; Muniesa, M and Gonzalez-Zorn, B (2017). Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. J. Antimicrob. Chemother., 72: 1050-1053.
Park, CH; Robicsek, A; Jacoby, GA; Sahm, D and Hooper, DC (2006). Prevalence of aac (6’) Ib-cr encoding a ciprofloxacin-modifying enzyme in the United States. Antimicrob. Agents Chemother., 50: 3953-3955.
Pérez-Pérez, FJ and Hanson, ND (2002). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol., 40: 2153-2162.
Picard, B; Garcia, JS; Gouriou, S; Duriez, P; Brahimi, N; Bingen, E; Elion, J and Denamur, E (1999). The link between phylogeny and virulence in Escherichia coli extra intestinal infection. Infect. Immun., 67: 546-553.
Pitout, JD (2012). Extraintestinal pathogenic Escherichia coli: an update on antimicrobial resistance, laboratory diagnosis and treatment. Expert. Rev. Anti. Infect. Ther., 10: 1165-1176.
Polsfuss, S; Bloemberg, GV; Giger, J; Meyer, V; Böttger, EC and Hombach, M (2011). Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J. Clin. Microbiol., 49: 2798-2803.
Pupo, GM; Karaolis, DK; Lan, R and Reeves, PR (1997). Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect. Immun., 65: 2685-2692.
Qekwana, DN; Phophi, L; Naidoo, V and Oguttu, JW (2018). Antimicrobial resistance among Escherichia coli isolates from dogs presented with urinary tract infections at a veterinary teaching hospital in South Africa. BMC Vet. Res., 14: 228 (1-6).
Quinn, PJ; Markey, BK; Leonard, FC; Hartigan, P; Fanning, S and Fitzpatrick, E (2011). Veterinary microbiology and microbial disease. 2nd Edn., Wiley-Blackwell, Chichester.
Robicsek, A; Strahilevitz, J; Jacoby, GA; Macielag, M; Abbanat, D; Park, CH; Bush, K and Hooper, DC (2006). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med., 12: 83-88.
Rossolini, GM; D’andrea, MM and Mugnaioli, C (2008). The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect., 14: 33-41.
Saladin, M; Cao, VT; Lambert, T; Donay, JL; Herrmann, JL; Ould-Hocine, Z; Verdet, C; Delisle, F; Philippon, A and Arlet, G (2002). Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett., 209: 161-168.
Salgado-Caxito, M; Benavides, JA; Adell, AD; Paes, AC and Moreno-Switt, AI (2021). Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats-A scoping review and meta-analysis. One Health. 12: 100236 (1-15).
Seguin, MA; Vaden, SL; Altier, C; Stone, E and Levine, JF (2003). Persistent urinary tract infections and reinfections in 100 dogs (1989-1999). J. Vet. Intern. Med., 17: 622-631.
Shaheen, BW; Nayak, R; Foley, SL; Kweon, O; Deck, J; Park, M; Rafii, F and Boothe, DM (2011). Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from
companion animals in the United States. Antimicrob. Agents Chemother., 55: 5666-5675.
Shahid, M; Sobia, F; Singh, A and Khan, HM (2012). Concurrent occurrence of blaampC families and blaCTX-M genogroups and association with mobile genetic elements ISEcp1, IS26, ISCR1, and sul1-type class 1 integrons in Escherichia coli and Klebsiella pneumoniae isolates originating from India. J. Clin. Microbiol., 50: 1779-1782.
Smet, A; Van Nieuwerburgh, F; Vandekerckhove, TT; Martel, A; Deforce, D; Butaye, P and Haesebrouck, F (2010). Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS One. 5: e11202.
Stiffler, KS; Stevenson, MAM; Sanchez, S; Barsanti, JA; Hofmeister, E and Budsberg, SC (2006). Prevalence and characterization of urinary tract infections in dogs with surgically treated type 1 thoracolumbar intervertebral disc extrusion. Vet. Surg., 35: 330-336.
Thakuria, B and Lahon, K (2013). The beta lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. J. Clin. Diagn. Res., 7: 1207-1214.
Valenza, G; Nickel, S; Pfeifer, Y; Eller, C; Krupa, E; Lehner-Reindl, V and Höller, C (2014). Extended-spectrum-β-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob. Agents Chemother., 58: 1228-1230.
Vashist, H; Sharma, D and Gupta, A (2013). A review on commonly used biochemical test for bacteria. Innovare J. Sci., 1: 1-7.
Ventola, CL (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther., 40: 277-283.
Walk, ST; Alm, EW; Calhoun, LM; Mladonicky, JM and Whittam, TS (2007). Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ. Microbiol., 9: 2274-2288.
Zeynudin, A; Pritsch, M; Schubert, S; Messerer, M; Liegl, G; Hoelscher, M; Belachew, T and Wieser, A (2018). Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect. Dis., 18: 524 (1-10).
Zogg, AL; Simmen, S; Zurfluh, K; Stephan, R; Schmitt, SN and Nüesch-Inderbinen, M (2018). High prevalence of extended-spectrum β-lactamase producing entero-bacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front. Vet. Sci., 5: 62 (1-8).