روند و پیش بینی سری زمانی سل گاوی: یک تجزیه و تحلیل داده‌های سری زمانی در شمال شرق ایران

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: بیماری سل گاوی از نظر خسارت‌های سنگین اقتصادی دارای اهمیت می‌باشد. هدف: تعیین یک سیستم مراقبتی هشدار سریع قبل از طغیان بیماری است. روش کار: در مطالعه مقطعی حاضر، میانگین متحرک خودهمبسته یکپارچه (ARIMA) جهت شناسایی ماهانه سل گاوی (راکتورها) استفاده شد. راکتورها توسط تست مشتق پروتئینی خالص شده توبرکولین (PPD) در گاوداری‌ها، در بازه زمانی فروردین 1386 تا اسفند 1397 در استان خراسان رضوی شناسایی شدند. نمودارهای خود همبستگی (ACF) و خود همبستگی جزئی (PACF) برای تعیین پارامترهای مدل به کار رفت. به منظور انتخاب بهترین مدل از معیار اطلاعاتی آکائیکه (AIC) استفاده و دقت مدل‌ها با خطای جذر میانگین مربع‌ها (RMSE) ارزیابی شد. سپس بهترین مدل انتخابی برای پیش بینی بیماری برای 12 ماه آینده به کار رفت. داده‌ها با نرم افزار STATA (نسخه 14) با سطح معنی‌داری ‍0.05 مورد تجزیه و تحلیل قرار گرفت. نتایج: مدل ARIMA (3, 0, 3) 12 با مشخصه استقلال باقیمانده‌ها ( Q=22.87 و P=0.98) ، کمترین AIC (85/541) و بیشترین دقت (RMSE=1.50) به عنوان یک مدل مناسب توصیه شد. با این حال، مقادیر پیش بینی شده بیش از مقادیر مشاهده شده می‌باشد. نتیجه‌گیری: کاربرد و تفسیر مدل‌های ARIMA ساده است و آن‌ها ابزار فوری نظارت بر سیستم‌ها هستند. با این حال، ما یک مدل میانگین متحرک خودهمبسته یکپارچه با ورود برخی از عوامل قابل اندازه‌گیری (ARIMAX) مانند نوسانات اقتصادی، تغییرات آب و هوایی و سل ریوی در انسان را پیشنهاد می‌کنیم تا یک مدل دقیق‌تر هشدار سریع برای سیستم مراقبت ارائه دهیم.
 

کلیدواژه‌ها

موضوعات


Abdollahzadeh, H; Rahmanian, V; Sharifi, N; Zahedi, R; Bajestani, MJN; GholianAval, M; Esmaeilzadeh, N; Hadjzadeh, M and Ahmadian, M (2021). Risks assessment of Adherence to non-pharmaceutical measures towards COVID-19 among residents of Mashhad in the North-East of Iran during the awful wave of the epidemic. J. Family Med. Prim. Care. 10: 3211-3218.
Akbarein, H; Bahonar, AR; Bokaie, S; Mosavar, N; Rahimi-Foroushani, A; Sharifi, H; Makenali, AS; Rokni, ND; Marhamati-Khameneh, B and Broumanfar, S (2014). Determinants of bovine tuberculosis in dairy farms covered by the tuberculin screening test: A herd level case control study. IJE., 10: 15-24.
Becketti, S (2013). Introduction to time series using Stata. Vol. 4905, College Station, TX: Stata Press. PP: 176-182.
Brockwell, PJ (2014). Time series analysis. Wiley StatsRef: Statistics Reference Online.
Carrique-Mas, JJ; Medley, GF and Green, LE (2008). Risks for bovine tuberculosis in British cattle farms restocked after the foot and mouth disease epidemic of 2001. Prev. Vet. Med., 84: 85-93.
Ciaravino, G; García-Saenz, A; Cabras, S; Allepuz, A; Casal, J; García-Bocanegra, I; De Koeijer, A; Gubbins, S; Sáez, JL; Cano-Terriza, D and Napp, S (2018). Assessing the variability in transmission of bovine tuberculosis within Spanish cattle herds. Epidemics. 23: 110-120.
Claridge, J; Diggle, P; McCann, CM; Mulcahy, G; Flynn, R; McNair, J; Strain, S; Welsh, M; Baylis, M and Williams, DJ (2012). Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle. Nat. Commun., 3: 1-8.
Cosivi, O; Grange, JM; Daborn, CJ; Raviglione, MC; Fujikura, T; Cousins, D; Robinson, RA; Huchzermeyer, HF; de Kantor, I and Meslin, FX (1998). Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg. Infect. Dis., 4: 59.
Cunha, GBD; Luitgards-Moura, JF; Naves, ELM; Andrade, AO; Pereira, AA and Milagre, ST (2010). Use of an artificial neural network to predict the incidence of malaria in the city of Canta, state of Roraima. Rev. Soc. Bras. Med. Trop., 43: 567-570.
Esmaeilzadeh, N; Bahonar, A; Rahimi Foroushani, A; Nasehi, M and Shakeri, MT (2019). Which type of univariate forecasting methods is appropriate for prediction of tuberculosis cases in Razavi Khorasan Province? A need for surveillance and biosurveillance systems. JMM., 7: e96229.
Esmaeilzadeh, N; Shakeri, M; Esmaeilzadeh, M and Rahmanian, V (2020). ARIMA models forecasting the SARS-COV-2 in the Islamic Republic of Iran. Asian Pac. J. Trop. Dis., 13: 521.
Gharbi, M; Quenel, P; Gustave, J; Cassadou, S; La Ruche, G; Girdary, L and Marrama, L (2011). Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect. Dis., 11: 1-13.
Gordejo, FR and Vermeersch, JP (2006). Towards eradication of bovine tuberculosis in the European Union. Vet. Microbiol., 112: 101-109.
Guo, LC; Wu, W; Guo, JQ; Wang, P and Zhou, BS (2008). Appling grey swing model to predict the incidence trend of hemorrhagic fever with renal syndrome in Shenyang. J. China Med. Univ., 37: 839-842.
Inlamea, OF; Soares, P; Ikuta, CY; Heinemann, MB; Achá, SJ; Machado, A; Ferreira Neto, JS; Correia-Neves, M; and Rito, T (2020). Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests co-evolution with livestock and humans. PLoS Negl. Trop. Dis., 14: e0008081.
Li, Q; Guo, NN; Han, ZY; Zhang, YB; Qi, SX; Xu, YG; Wei, YM; Han, X; and Liu, YY (2012). Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic fever with renal syndrome. Am. J. Trop. Med. Hyg., 87: 364-370.
Liu, Q; Liu, X; Jiang, B and Yang, W (2011). Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect. Dis., 11: 1-7.
LoBue, PA; Enarson, DA and Thoen, CO (2010). Tuberculosis in humans and animals: an overview [serialised article. Tuberculosis: a re-emerging disease in animals and humans. Number 1 in the series]. Int. J. Tuberc. Lung. Dis., 14: 1075-1078.
Lu, HM; Zeng, D and Chen, H (2009). Prospective infectious disease outbreak detection using Markov switching models. IEEE Trans. Knowl. Data. Eng., 22: 565-577.
Meng, XJ; Lindsay, DS and Sriranganathan, N (2009). Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 364: 2697-2707.
Menzies, FD and Neill, SD (2000). Cattle-to-cattle transmission of bovine tuberculosis. Vet. J., 160: 92-106.
Michel, AL; Müller, B and Van Helden, PD (2010). Mycobacterium bovis at the animal-human interface: A problem, or not? Vet. Microbiol., 140: 371-381.
Moosazadeh, M; Khanjani, N; Nasehi, M and Bahrampour, A (2015). Predicting the incidence of smear positive tuberculosis cases in Iran using time series analysis. Iran. J. Public Health, 44: 1526-1534.
Moosazadeh, M; Nasehi, M; Bahrampour, A; Khanjani, N; Sharafi, S and Ahmadi, S (2014). Forecasting tuberculosis incidence in Iran using box-Jenkins models. Iran. Red. Crescent Med. J., 16: e11779.
Munyeme, M; Munang’andu, HM; Nambota, A; Muma, JB; Phiri, AM and Nalubamba, KS (2012). The nexus between bovine tuberculosis and fasciolosis infections in cattle of the Kafue Basin Ecosystem in Zambia: implications on abattoir surveillance. Vet. Med. Int., 2012.
Olsson, GE; Hjertqvist, M; Lundkvist, Å and Hörnfeldt, B (2009). Predicting high risk for human hantavirus infections, Sweden. Emerg. Infect. Dis., 15: 104-106.
Smith, NH; Gordon, SV; de la Rua-Domenech, R; Clifton-Hadley, RS and Hewinson, RG (2006). Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat. Rev. Microbiol., 4: 670-681.
Tadayon, K; Mosavari, N and Feizabadi, MM (2013). An epidemiological perspective on bovine tuberculosis spotlighting facts and dilemmas in Iran, a historically zebu-dominant farming country. Iran J. Microbiol., 5: 1-13.
Torgerson, P and Torgerson, D (2009). Benefits of stemming bovine TB need to be demonstrated. Nature. 457: 657.
Wang, YJ; Zhao, TQ; Wang, P; Li, SQ; Huang, Z; Yang, GQ; Li XY; and Liu, B (2006). Applying linear regression
statistical method to predict the epidemic of hemorrhagic fever with renal syndrome. Chin. J. Vec. Biol. Contr., 17: 333-334.
Wongkoon, S; Jaroensutasinee, M and Jaroensutasinee, K (2012). Development of temporal modeling for prediction of dengue infection in Northeastern Thailand. Asian Pac. J. Trop. Med., 5: 249-252.
Wu, W; Guan, P; Guo, JQ and Zhou, BS (2008). Comparison of GM (1, 1) gray model and ARIMA model in forecasting the incidence of hemorrhagic fever with renal syndrome. J. China Med. Univ., 37: 52-55.
Wu, Z; Wu, W and Wang, P (2006). Prediction for incidence of hemorrhagic fever with renal syndrome with back propagation artificial neural network model. Chin. J. Vec. Biol. Contr., 17: 223.
Zheng, YL; Zhang, LP; Zhang, XL; Wang, K and Zheng, YJ (2015). Forecast model analysis for the morbidity of tuberculosis in Xinjiang, China. PloS One. 10: e0116832.