Carter, P; Presta, L; Gorman, CM; Ridgway, JB; Henner, D; Wong, WL; Rowland, AM; Kotts, C; Carver, ME and Shepard, HM (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. U. S. A., 89: 4285-4289.
Clynes, RA; Towers, TL; Presta, LG and Ravetch, JV (2000). Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med., 6: 443-446.
Collins, DM; O’Donovan, N; McGowan, PM; O’Sullivan, F; Duffy, MJ and Crown, J (2012). Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann. Oncol., 23: 1788-1795.
Cooley, S; Burns, LJ; Repka, T and Miller, JS (1999). Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp. Hematol., 27: 1533-1541.
Cuello, M; Ettenberg, SA; Clark, A; Keane, MM; Posner, RH; Nau, MM; Dennis, PA and Lipkowitz, S (2001). Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res., 61: 4892-4900.
Grimm, EA; Mazumder, A; Zhang, HZ and Rosenberg, SA (1982). Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med., 155: 1823-1841.
Kawaguchi, Y; Kono, K; Mizukami, Y; Mimura, K and Fujii, H (2009). Mechanisms of escape from trastuzumab-mediated ADCC in esophageal squamous cell carcinoma: relation to susceptibility to perforin-granzyme. Anticancer Res., 29: 2137-2146.
Kim, Y; Lee, SH; Kim, CJ; Lee, JJ; Yu, D; Ahn, S; Shin, DJ and Kim, SK (2019). Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody coated tumor cells. BMC. Vet. Res., 15: 339.
Lin, YC; Huang, YC; Wang, YS; Juang, RH; Liao, KW and Chu, RM (2010). Canine CD8 T cells showing NK cytotoxic activity express mRNAs for NK cell-associated surface molecules. Vet. Immunol. Immunopathol., 133: 144-153.
London, CA (2013). Signal transduction and cancer. In: Withrow, SJ; Vail, DM and Page, RL (Eds.), Withrow and MacEwen’s small animal clinical oncology. (5th Edn.), Missouri, Elsevier. PP: 221-229.
Meropol, NJ; Barresi, GM; Fehniger, TA; Hitt, J; Franklin, M and Caligiuri, MA (1998). Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate dose-pulsing. Cancer Immunol. Immunother., 46: 318-326.
Mimura, K; Kono, K; Hanawa, M; Kanzaki, M; Nakao, A; Ooi, A and Fujii, H (2005). Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clin. Cancer Res., 11: 4898-4904.
Nakagawa, T; Watanabe, M; Ohashi, E; Uyama, R; Takauji, S; Mochizuki, M; Nishimura, R; Ogawa, H; Sugano, S and Sasaki, N (2006). Cyclopedic protein expression analysis of cultured canine mammary gland adenocarcinoma cells from six tumours. Res. Vet. Sci., 80: 317-323.
Ohnishi, H; Okuno, K and Yasutomi, M (1993). Successful in vivo generation of canine lymphokine-activated killer cells by continuous recombinant interleukin-2 infusion through the splenic artery. Cancer Biother., 8: 213-222.
Pena, L; Gama, A; Goldschmidt, MH; Abadie, J; Benazzi, C; Castagnaro, M; Diez, L; Gartner, F; Hellmen, E; Kiupel, M; Millan, Y; Miller, MA; Nguyen, F; Poli, A; Sarli, G; Zappulli, V and Mulas, JM (2014). Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet. Pathol., 51: 127-145.
Singer, J; Weichselbaumer, M; Stockner, T; Mechtcheriakova, D; Sobanov, Y; Bajna, E; Wrba, F; Horvat, R; Thalhammer, JG; Willmannb, M and Jarolim, EJ (2012). Comparative oncology: ErbB-1 and ErbB-2 homologues in canine cancer are susceptible to cetuximab and trastuzumab targeting. Mol. Immunol., 50: 200-209.
Slamon, DJ; Godolphin, W; Jones, LA; Holt, JA; Wong, SG; Keith, DE; Levin, WJ; Stuart, SG; Udove, J and Ullrich, A (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 244: 707-712.
Slamon, DJ; Leyland-Jones, B; Shak, S; Fuchs, H; Paton, V; Bajamonde, A; Fleming, T; Eiermann, W; Wolter, J; Pegram, M; Baselga, J and Norton, L (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpress HER2. N. Engl. J. Med., 344: 783-792.
Sliwkowski, MX; Lofgren, JA; Lewis, GD; Hotaling, TE; Fendly, BM and Fox, JA (1999). Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol., 26: 60-70.
Takehana, T; Kunitomo, K; Kono, K; Kitahara, F; Iizuka, H; Matsumoto, Y; Fujino, MA and Ooi, A (2002). Status of c-erbB-2 in gastric adenocarcinoma: A comparative study of immunohistochemistry, fluorescence in situ hybridization and enzyme-linked immuno-sorbent assay. Int. J. Cancer. 98: 833-837.
Veloso, ES; Gonçalves, INN; Silveira, TL; Oliveira, FS; Vieira, DS; Cassali, GD; Puerto, HLD and Ferreira, E (2020). Diverse roles of epidermal growth factors receptors in oral and cutaneous canine melanomas. BMC. Vet. Res., 16: 24.
Yamaguchi, Y; Hironaka, K; Okawaki, M; Okita, R; Matsuura, K; Ohshita, A and Toge, T (2005). HER2-specific cytotoxic activity of lymphokine-activated killer cells in the presence of trastuzumab. Anticancer Res., 25: 827-832.
Yoshimoto, S; Kato, D; Kamoto, S; Yamamoto, K; Tsuboi, M; Shinada, M; Ikeda, N; Tanaka, Y; Yoshitake, R; Eto, S; Saeki, K; Chambers, JK; Kinoshita, R; Uchida, K; Nishimura, R and Nakagawa, T (2019). Detection of human epidermal growth factor receptor 2 overexpression in canine anal sac gland carcinoma. J. Vet. Med. Sci., 81: 1034-1039.