Abebe, G; Ike, A; Siegmund-Schultze, M; Mané-Bielfeldt, A and Valle Zárate, A (2010). Prevalence of mastitis and brucellosis in cattle in Awassa and the Peri-Urban areas of two smaller towns. Zoonoses Public Health. 57: 367-374.
Al Dahouk, S; Sprague, L and Neubauer, H (2013). New developments in the diagnostic procedures for zoonotic brucellosis in humans. Rev. Sci. Tech., 32: 177-188.
Alfavian, H; Mousavi Gargari, SL; Rasoulinejad, S and Medhat, A (2017). Development of a DNA aptamer that binds specifically to group A Streptococcus serotype M3. Can. J. Microbiol., 63: 160-168.
Almasi, F; Gargari, SLM; Bitaraf, F and Rasoulinejad, S (2016). Development of a single stranded DNA aptamer as a molecular probe for lncap cells using cell-selex. Avicenna J. Med. Biotechnol., 8: 104.
Bitaraf, F; Rasooli, I and Gargari, SM (2016). DNA aptamers for the detection of Haemophilus influenzae type b by cell SELEX. Eur. J. Clin. Microbiol. Infect. Dis., 35: 503-510.
Blind, M and Blank, M (2015). Aptamer selection technology and recent advances. Mol. Ther. Nucleic Acids. 4: e223.
Brody, EN and Gold, L (2000). Aptamers as therapeutic and diagnostic agents. J. Biotechnol., 74: 5-13.
Chen, Y; Munteanu, AC; Huang, YF; Phillips, J; Zhu, Z; Mavros, M and Tan, W (2009). Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chemistry. 15: 5327-5336.
Chen, C; Zhou, S; Cai, Y and Tang, F (2017). Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis. Oncol., 1: 1-7.
Christoforidou, S; Boukouvala, E; Zdragas, A; Malissiova, E; Sandalakis, V; Psaroulaki, A; Petridou, E; Tsakos, P; Ekateriniadou, L and Hadjichristodoulou, C (2018). Novel diagnostic approach on the identification of Brucella melitensis Greek endemic strains-discrimination from the vaccine strain Rev. 1 by PCR-RFLP assay. Vet. Med. Sci., 4: 172-182.
Ducrotoy, MJ; Muñoz, PM; Conde-Álvarez, R; Blasco, JM and Moriyón, I (2018). A systematic review of current immunological tests for the diagnosis of cattle brucellosis. Prev. Vet. Med., 151: 57-72.
Dunn, MR; Jimenez, RM and Chaput, JC (2017). Analysis of aptamer discovery and technology. Nat. Rev. Chem., 1: 1-16.
Dwivedi, HP; Smiley, RD and Jaykus, LA (2013). Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl. Microbiol. Biotechnol., 97: 3677-3686.
Fakhri, N; Hosseini, M and Tavakoli, O (2018). Aptamer-based colorimetric determination of Pb 2+ using a paper-based microfluidic platform. Anal. Methods. 10: 4438-4444.
Gewirtz, A (1999). Oligonucleotide therapeutics: clothing the emperor. Curr. Opin. Mol. Ther., 1: 297-306.
Gopinath, SC; Lakshmipriya, T and Awazu, K (2014). Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron., 51: 115-123.
Hamula, CL; Le, XC and Li, XF (2011). DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal. Chem., 83: 3640-3647.
Islam, M; Khatun, M; Saha, S; Basir, M and Hasan, MM (2018). Molecular detection of Brucella spp. from milk of seronegative cows from some selected area in Bangladesh. J. Pathog., 2018: 9378976.
Kaden, R; Ferrari, S; Alm, E and Wahab, T (2017). A novel real-time PCR assay for specific detection of Brucella melitensis. BMC Infect. Dis., 17: 230.
Ladju, RB; Pascut, D; Massi, MN; Tiribelli, C and
Sukowati, CH (2018). Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget. 9: 2951.
Lucero, N; Ayala, S; Escobar, G and Jacob, N (2008). Brucella isolated in humans and animals in Latin America from 1968 to 2006. Epidemiol. Infect., 136: 496-503.
Minda, AG and Gezahegne, MK (2016). A review on diagnostic methods of brucellosis. J. Vet. Sci. Technol., 7: 323.
Mirzakhani, K; Gargari, SLM; Rasooli, I and Rasoulinejad, S (2018). Development of a DNA aptamer for screening Neisseria meningitidis serogroup B by cell SELEX. Iran Biomed. J., 22: 193.
Morita, Y; Leslie, M; Kameyama, H; Volk, DE and Tanaka, T (2018). Aptamer therapeutics in cancer. Cancers (Basel). 10: 80.
Mostafavi, E and Asmand, M (2012). Trend of brucellosis in Iran from 1991 to 2008. IJE., 8: 94-101.
Mousa, ARM; Elbag, KM; Kbogali, M and Marafie, AA (1988). The nature of human brucellosis in Kuwait: study of 379 cases. Rev. Infect. Dis., 10: 211-217.
Ohuchi, S (2012). Cell-SELEX technology. BioRes. Open Access. 1: 265-272.
Peterson, LE; Blackburn, B; Peabody, M and O’Neill, TR (2015). Family physicians’ scope of practice and American Board of Family Medicine recertification examination performance. J. Am. Board Fam. Med., 28: 265-270.
Rasoulinejad, S and Gargari, SLM (2016). Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates. J. Biotechnol., 231: 46-54.
Shakerian, A and Nodargah, M (2018). Review of Brucella contamination in Milk and its products of Iran. J. food Microbiol., 5: 83-94.
Shangguan, D; Bing, T and Zhang, N (2015). Cell-SELEX: Aptamer selection against whole cells. In: Aptamers selected by cell-SELEX for theranostics. Berlin, Heidelberg, Springer. PP: 13-33.
Shipley, SL; White, E and Kim, SK (2010). Selection of aptamers against live E. coli cells using Cell SELEX. FASEB J., 24: 907-914.
Song, D; Qu, X; Liu, Y; Li, L; Yin, D; Li, J; Xu, K; Xie, R; Zhai, Y; Zhang, H and Bao, H (2017). A rapid detection method of Brucella with quantum dots and magnetic beads conjugated with different polyclonal antibodies. Nanoscale Res. Lett., 12: 179.
Tsao, SM; Lai, JC; Horng, HE; Liu, TC and Hong, CY (2017). Generation of aptamers from a primer-free randomized ssDNA library using magnetic-assisted rapid aptamer selection. Sci. Rep.,7: 45478.
Volk, DE and Lokesh, GL (2017). Development of phosphorothioate DNA and DNA thioaptamers. Biomedicines. 5: 41.
Yu, X; Chen, F; Wang, R and Li, Y (2018). Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J. Biotechnol., 266: 39-49.
Zhou, J and Rossi, J (2017). Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov., 16: 181.