سروگروه‌ها، و مقاومت دارویی سالمونلای غیر تیفوئیدی در بیماران علامت‌دار با اسهال اکتسابی از جامعه و نمونه‌های گوشت مرغ در تهران

نوع مقاله : مقاله کامل

نویسندگان

.

چکیده

پیشینه: سالمونلا به عنوان عامل اصلی اسهال اکتسابی از جامعه در انسان در نظر گرفته می‌شود، هرچند مخازن سویه‌های دارای الگوی مقاومت چند دارویی (MDR) و ارتباط آن‌ها با این بیماری به طور کامل مشخص نیست. هدف: این مطالعه به بررسی فراوانی، تنوع سروگروه‌ها و الگوهای مقاومت دارویی سویه‌های سالمونلا در نمونه‌های گوشت مرغ و مدفوع بیماران مبتلا به اسهال اکتسابی از جامعه در تهران می‌پردازد. روش کار: در این مطالعه، فراوانی سروگروه‌های سالمونلا غیر تیفوئیدی، شباهت الگوی‌های مقاومت آن‌ها به 10 ترکیب ضد میکروبی، شیوع              β-لاکتامازهای طیف گسترده (ESBL) و عوامل تعیین کننده ژنتیکی AmpC، و کلاس‌های 1 و 2 اینتگرون‌ها در بین 100 نمونه گوشت مرغ و 400 نمونه مدفوع بیماران علامت‌دار در تهران از ژوئن 2018 تا مارس 2019 مقایسه شد. نتایج: سالمونلا به ترتیب از 75% و 5/5% نمونه‌های گوشت مرغ و مدفوع انسانی جدا شد. جدایه‌های گوشت مرغ به طور عمده به سروگروه C تعلق داشتند (88%، 75/66)، در حالی که جدایه‌های مدفوع انسان عمدتا مربوط به سروگروه D بود (1/59%، 22/13). فنوتیپ MDR و متداول‌ترین میزان مقاومت در برابر آنتی بیوتیک‌ها، از جمله تتراسایکلین، تری متوپریم/سولفامتوکسازول (TS)، و آزیترومایسین در 5/4% و 3/45%، 59% و 6/13%، 43% و 1/9%، 42% و 1/9% نمونه‌های مدفوع انسانی و گوشت مرغ به ترتیب تشخیص داده شد. حضور ژن‌های blaCTX، blaSHV و blaPER در جدایه‌های گوشت دارای فنوتیپ مقاومتی ESBL و ژن‌های blaACC، blaFOX و blaCMY-2 در میان 7 سویه گوشت دارای فنوتیپ مقاومتی AmpC با استفاده از واکنش زنجیره‌ای پلیمراز (PCR) مورد تایید قرار نگرفت. شیوع بالایی از اینتگرون‌های کلاس 1 و 2 در این جدایه‌ها مشخص شد، که ارتباطی با مقاومت به TS و کلرامفنیکل نشان دادند. نتیجه‌گیری: این یافته‌ها عدم ارتباط بین جدایه‌های گوشت مرغ و انسانی را به دلیل عدم تطابق بین سروگروه‌های شناسایی شده و فنوتیپ‌های مقاومت نشان داد.

کلیدواژه‌ها

موضوعات


Abd-Elghany, S; Sallam, K; Abd-Elkhalek, A and Tamura, T (2015). Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect., 143: 997-1003.
Amini, K (2016). Prevalence of antibiotic resistance genes in Salmonella enteritidis isolated from animal and human and determining their antibiotic resistance patterns. J. Comp. Pathobiol. Iran., 12: 1733-1740.
Anonymous (2002). EN ISO 6579. Microbiology of food and animal feeding stuffs – Horizontal method for the detection of Salmonella spp. International Organization for Standardization, Geneva, Switzerland.
Britto, CD; Wong, VK; Dougan, G and Pollard, AJ (2018). A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis., 12: e0006779.
Chuma, T; Miyasako, D; Hesham, D; Takayama, T; Nakamoto, Y; Shahada, F; Akiba, M and Okamoto, K (2013). Chronological change of resistance to β-lactams in Salmonella enterica serovar Infantis isolated from broilers in Japan. Front Microbiol., 4: 113.
CLSI (2018). Performance standards for antimicrobial susceptibility testing. 28th Edn., Wayne, Pennsylvania. PP: 1-258.
Da Silva, N; Taniwaki, MH; Junqueira, VC; Silveira, N; Okazaki, MM and Gomes, RAR (2018). Microbiological examination methods of food and water: a laboratory manual. 2nd Edn., Taylor and Francis Group, UK, CRC Press. PP: 1-632.
Davis, JL; Smith, GW; Baynes, RE; Tell, LA; Webb, AI and Riviere, JE (2009). Update on drugs prohibited from extralabel use in food animals. J. Am. Vet. Med. Assoc., 235: 528-534.
Derakhshan, S; Najar Peerayeh, S; Fallah, F; Bakhshi, B; Rahbar, M and Ashrafi, A (2014). Detection of class 1, 2, and 3 integrons among Klebsiella pneumoniae isolated from children in Tehran hospitals. Arch. Pediatr. Infect. Dis., 2: 164-168.
European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC)(2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J., 16: e05500.
Farag, E; Garcell, HG; Ganesan, N; Ahmed, SNN; Al-Hajri, M; Al Thani, SMHJ; Al-Marri, SA; Ibrahim, E and Al-Romaihi, HE (2016). A retrospective epidemiological study on the incidence of salmonellosis in the State of Qatar during 2004-2012. Qatar Med. J., 2016: 3.
Fiett, J; Baraniak, A; Mrówka, A; Fleischer, M; Drulis-Kawa, Z; Naumiuk, Ł; Samet, A; Hryniewicz, W and Gniadkowski, M (2006). Molecular epidemiology of acquired-metallo-β-lactamase-producing bacteria in Poland. Antimicrob. Agents Chemother., 50: 880-886.
Firoozeh, F; Zahraei-Salehi, T and Shahcheraghi, F (2014). Molecular clonality and detection of class 1 integron in multidrug-resistant Salmonella enterica isolates from animal and human in Iran. Microb. Drug Resist., 20: 517-524.
Ford, L; Glass, K; Veitch, M; Wardell, R; Polkinghorne, B; Dobbins, T; Lal, A and Kirk, MD (2016). Increasing incidence of Salmonella in Australia, 2000-2013. PLoS One. 11: e0163989.
Gehring, R; Baynes, R and Riviere, J (2006). Application of risk assessment and management principles to the extralabel use of drugs in food-producing animals. J. Vet. Pharmacol. Ther., 29: 5-14.
Ghasemi, Y; Archin, T; Kargar, M and Mohkam, M (2013). A simple multiplex PCR for assessing prevalence of extended-spectrum β-lactamases producing Klebsiella pneumoniae in Intensive Care Units of a referral hospital in Shiraz, Iran. Asian Pac. J. Trop. Med., 6: 703-708.
Harish, B and Menezes, G (2011). Antimicrobial resistance in typhoidal Salmonellae. Indian J. Med. Microbiol., 29: 223-229.
Hendriksen, RS; Joensen, KG; Lukwesa-Musyani, C; Kalondaa, A; Leekitcharoenphon, P; Nakazwe, R; Aarestrup, FM; Hasman, H and Mwansa, JC (2013). Extremely drug-resistant Salmonella enterica serovar Senftenberg infections in patients in Zambia. J. Clin. Microbiol., 51: 284-286.
Hugas, M and Beloeil, P (2014). Controlling Salmonella along the food chain in the European Union-progress over the last ten years. Eurosurveillance. 19: 20804.
Hur, J; Kim, JH; Park, JH; Lee, YJ and Lee, JH (2011). Molecular and virulence characteristics of multi-drug resistant Salmonella Enteritidis strains isolated from poultry. Vet. J., 189: 306-311.
Jeon, HY; Seo, KW; Kim, YB; Kim, DK; Kim, SW and Lee, YJ (2018). Characteristics of third-generation cephalosporin-resistant Salmonella from retail chicken meat produced by integrated broiler operations. Poult. Sci., 98: 1766-1774.
Jørgensen, RL; Nielsen, JB; Friis-Møller, A; Fjeldsøe-Nielsen, H and Schønning, K (2010). Prevalence and molecular characterization of clinical isolates of Escherichia coli expressing an AmpC phenotype. J. Antimicrob. Chem., 65: 460-464.
Kaur, J (2013). Increasing antimicrobial resistance and narrowing therapeutics in typhoidal Salmonellae. J. Clin. Diagn. Res., 7: 576.
Klemm, EJ; Shakoor, S; Page, AJ; Qamar, FN; Judge, K; Saeed, DK; Wong, VK; Dallman, TJ; Nair, S and Baker, S (2018a). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. mBio. 9: e00105-00118.
Konaté, A; Guessennd, N; Kouadio, F; Dembélé, R and Kagambèga, A (2019). Epidemiology and resistance phenotypes of Salmonella spp. strains responsible for gastroenteritis in children less than five years of age in Ouagadougou, Burkina Faso. Arch. Clin. Microbiol., 10: 90.
Kretzschmar, M; Mangen, MJJ; Pinheiro, P; Jahn, B; Fevre, EM; Longhi, S; Lai, T; Havelaar, AH; Stein, C and Cassini, A (2012). New methodology for estimating the burden of infectious diseases in Europe. PLoS Med., 9: e1001205.
Le Hello, S; Harrois, D; Bouchrif, B; Sontag, L; Elhani, D; Guibert, V; Zerouali, K and Weill, FX (2013). Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study. Lancet Infect. Dis., 13: 672-679.
Manyi-Loh, C; Mamphweli, S; Meyer, E and Okoh, A (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 23: 795.
Mietzner, TA; Carroll, KC; Hobden, JA; Miller, S; Morse, SA; Mitchell, TG; Sakanari, JA; McKerrow, JH and Detrick, B (2016). Jawetz, Melnick & Adelberg’s medical microbiology. 27th Edn., Chapter 15, Enteric Gram-Negative Rods (Enterobacteriaceae). McGraw-Hill Education. PP: 231-238.
Mikoleit, M (2010). Laboratory protocol: biochemical identification of Salmonella and Shigella using an abbreviated panel of tests. Geneva, Switzerland: WHO Global Foodborne Infections Network. http:// antimicrobialresistance.dk/CustomerData/Files/Folders/6-pdf-protocols/63_18-05-isolation-of-salm-220610.pdf.
Miriagou, V; Carattoli, A and Fanning, S (2006). Antimicrobial resistance islands: resistance gene clusters in Salmonella chromosome and plasmids. Microbes Infect., 8: 1923-1930.
Monstein, HJ; ÖStholm-Balkhed, Å; Nilsson, MV; Nilsson, M; Dornbusch, K and Nilsson, LE (2007). Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS. 115: 1400-1408.
Noda, T; Murakami, K; Ishiguro, Y and Asai, T (2010). Chicken meat is an infection source of Salmonella serovar Infantis for humans in Japan. Foodborne Pathog. Dis., 7: 727-735.
Pérez-Pérez, FJ and Hanson, ND (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol., 40: 2153-2162.
Popoff, MY (1997). Antigenic formulas of the Salmonella serovars. WHO Collaborating Center for Reference and Research on Salmonella. https://www.pasteur.fr/sites/ default/files/veng_0.pdf.
Popoff, M and Le Minor, L (2001). Antigenic formulas of the Salmonella serovars, WHO Collaborating Centre for Reference and Research on Salmonella. World Health Organization, Geneva, Switzerland.
Raeisi, E and Ghiamirad, M (2015). Survey on prevalence of Salmonella serogroups and antibiotics susceptibility pattern in chicken meat in Ardabil, Iran. J. Ardabil Univer. Med. Sci., 15: 320-329.
Ramadan, F; Unni, A; Hablas, R and Rizk, M (1992). Salmonella-induced enteritis. Clinical, serotypes and treatment. J. Egypt. Public Health Assoc., 67: 357-367.
Soltan Dallal, MM and Moezardalan, K (2004). Aeromonas spp associated with children’s diarrhoea in Tehran: a case-control study. Ann. Trop. Paediatr., 24: 45-51.
Stanaway, JD; Reiner, RC; Blacker, BF; Goldberg, EM; Khalil, IA; Troeger, CE; Andrews, JR; Bhutta, ZA; Crump, JA and Im, J (2019). The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis., 19: 369-381.
Tajbakhsh, M; Avini, MY; Alikhajeh, J; Tajeddin, E; Rahbar, M; Eslami, P; Alebouyeh, M and Zali, MR (2016). Emergence of blaCTX-M-15, blaTEM-169 and blaPER-1 extended-spectrum β-lactamase genes among different Salmonella enterica serovars from human faecal samples. Infect Dis. (London)., 48: 550-556.
Threlfall, EJ (2010). Salmonella. In: Topley & Wilson’s microbiology and microbial infections. (Systemic Bacteriology) 10th Edn., Vol. 2, Hoboken, NJ, John Wiley & Sons, Ltd.
Tibaijuka, B; Molla, B; Hildebrandt, G and Kleer, J (2003). Occurrence of Salmonellae in retail raw chicken products in Ethiopia. Berl. Munch Tierarztl Wochenschr., 116: 55-58.
Travers, K and Michael, B (2002). Morbidity of infections caused by antimicrobial-resistant bacteria. Clin. Infect. Dis., 34: S131-S134.
Wang, W; Peng, Z; Baloch, Z; Hu, Y; Xu, J; Zhang, W;
Fanning, S and Li, F
(2017). Genomic characterization of an extensively-drug resistance Salmonella enterica serotype Indiana strain harboring blaNDM-1 gene isolated from a chicken carcass in China. Microbiol. Res., 204: 48-54.
White, DG; Hudson, C; Maurer, JJ; Ayers, S; Zhao, S; Lee, MD; Bolton, L; Foley, T and Sherwood, J (2000). Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J. Clin. Microbiol., 38: 4593-4598.
WHO (2010). Laboratory Protocol. In: Isolation of Salmonella spp. from food and animal faeces. 5th Edn., June 2010. PP: 4-8, 13.
Wong, MHY; Zeng, L; Liu, JH and Chen, S (2013). Characterization of Salmonella food isolates with concurrent resistance to ceftriaxone and ciprofloxacin. Foodborne Pathog. Dis., 10: 42-46.
Zdrodowska, B; Liedtke, K and Radkowski, M (2014). Post-harvest Salmonella spp. prevalence in turkey carcasses in processing plant in the northeast part of Poland. Pol. J. Vet. Sci., 17: 181-183.
Zeng, YB; Xiong, LG; Tan, MF; Li, HQ; Yan, H; Zhang, L; Yin, DF; Kang, ZF; Wei, QP and Luo, LG (2019). Prevalence and antimicrobial resistance of Salmonella in pork, chicken, and duck from retail markets of China. Foodborne Pathog. Dis., 16: 339-345.