Abbondio, M; Fois, I; Longheu, C; Azara, E and Tola, S (2019). Biofilm production, quorum sensing system and analysis of virulence factors of Staphylococcus epidermidis collected from sheep milk samples. Small Rumin Res., 174: 83-87.
Chang, L; Yang, Z; Wu, H; Chen, Y; Shi, X; Mao, Y; Cen, N; Liang, X and Yin, Z (2011). Comparative study on fatty acid composition between normal milk and subclinical mastitis milk of dairy cow. Acta Vet. Zoo. Sinica. 42: 44-47.
Cividini, A and Simčič, M (2015). Poljoprivreda fatty acid profile in milk of Bovec sheep fed in the stable or grazed in different pastures. Agriculture. 21: 109-112.
Dore, S; Liciardi, M; Amatiste, S; Bergagna, S; Bolzoni, G; Caligiuri, V; Cerrone, A; Farina, G; Montagna, CO; Saletti, MA; Scatassa, ML; Sotgiu, G and Cannas, EA (2016). Survey on small ruminant bacterial mastitis in Italy, 2013-2014. Small Rumin Res., 141: 91-93.
Endo, Y; Kamisada, S; Fujimoto, K and Saito, T (2006). Trans fatty acids promote the growth of some Lactobacillus strains. J. Gen. Appl. Microbiol., 52: 29-35.
Fragkou, IA; Boscos, CM and Fthenakis, GC (2014). Diagnosis of clinical or subclinical mastitis in ewes. Small Rumin. Res., 118: 86-92.
Fragkou, IA; Skoufos, J; Cripps, PJ; Kyriazakis, I; Papaioannou, N; Boscos, CM; Tzora, A and Fthenakis, GC (2007). Differences in susceptibility to Mannheimia haemolytica-associated mastitis between two breeds of dairy sheep. J. Dairy Res., 74: 349-355.
Fujita, Y; Matsuoka, H and Hirooka, K (2007). Regulation of fatty acid metabolism in bacteria. Mol. Microbiol., 66: 829-839.
Guetouache, M; Guessas, B and Medjekal, S (2014). Composition and nutritional value of raw milk (Review). Issues Biol. Sci. Pharm. Res., 2: 115-122.
Itoh, T; Fujimoto, Y; Kawai, Y; Toba, T andSaito, T (1995). Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett. Appl. Microbiol., 21: 137-141.
Kelsey, JA; Bayles, KW; Shafii, B and McGuire, MA (2006). Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids. 41: 951-961.
LeMarechal, C; Thiéry, R; Vautor, E and Le Loir, Y (2011). Mastitis impact on technological properties of milk and quality of milk products - A review. Dairy Sci. Technol., 91: 247-282.
Lu, T; Park, JY; Parnell, K; Fox, LA and McGuire, MA (2012). Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria. BMC Res. Notes. 5: 323-334.
Markiewicz-Keszyńska, M; Czyżak-Runowska, G; Lipińska, P and Wójtowski, J (2013). Fatty acid profile of milk-Review. Bull. Vet. Inst. Pulawy. 57: 135-139.
Mensink, RP; Temme, EHM and Hornstra, G (2009). Dietary saturated and transfatty acids and lipoprotein metabolism. Ann. Med., 6: 461-464.
Merz, A; Stephan, R and Johler, S (2016).
Staphylococcus aureus isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front. Microbiol., 7: 319-325.
Moossavi, S; Atakora, F; Miliku, K; Sepehri, S; Robertson, B; Duan, Q; Becker, AB; Mandhane, PJ; Turvey, SE; Moraes, TJ; Lefebvre, DL; Sears, MR; Subbarao, P; Field, CJ; Bode, L; Khafipour, E and Azad, MB (2019). Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the child cohort. Front. Nutr., 6: 58-73.
Mortensen, JE; Shryock, TR and Kapral, FA (1992). Modification of bacterial fatty acids by an enzyme Staphylococcus aureus. J. Med. Microbiol., 36: 293-298.
Nazari, R; Godarzi, H; Rahimi Baghi, F and Moeinrad, M (2014). Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk. Iran. J. Vet. Res., 15: 409-412.
Nudda, A; Battacone, G; Boaventura Neto, O; Cannas, A; Francesconi, AHD; Atzori, AS and Pulina, P (2014). Feeding strategies to design the fatty acid profile of sheep milk and cheese. R. Bras. Zootec., 43: 445-456.
Park, YW; Juárez, M; Ramos, M and Haenlein, GFW (2007). Physico-chemical characteristics of goat and sheep milk. Small Rumin Res., 68: 88-113.
Patterson, E; Wall, R;Fitzgerald, GF; Ross, RP and Stanton, C (2012). Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab., 2012: 539426-539441.
Pecka-Kiełb, E; Vasil, M; Zachwieja, A; Zawadzki, W;
Elečko, J; Zigo, F; Illek, JandFarkašova, Z (2016). An effect of mammary gland infection caused by Streptococcus uberis on compositionand physicochemical changes of cows’ milk. Polish J. Vet. Sci., 19: 49-55.
Ptáček, M;Milerski, M;Ducháček, J;Schmidová, J;Tančin, V;Uhrinčat, M;Stádník, L andMichlová, T (2019). Analysis of fatty acid profile in milk fat of Wallachian sheep during lactation. J. Dairy Res., 86: 233-237.
Raynal-Ljutovac, K; Pirisi, A; de Crémoux, R and Gonzalo, C (2007). Somatic cells of goat and sheep milk: Analytical, sanitary, productive and technological aspects. Small Rumin Res., 68: 126-144.
Takano, PV; Scapini, VADC; Valentini, T; Girardini, LK; de Souza, FN; Della Libera, AMMP; Heinemann, MB; Chande, CG; Cortez, A; Collet, SG; Diniz, SA and Blagitz, MG (2018). Milk cellularity and intramammary infections in primiparous and multiparous Lacaune ewes during early lactation. Small Rum. Res., 167: 117-122.
Vasil, M; Pecka-Kiełb of, E; Elečko, J; Zachwieja, A; Zawadzki, W; Zigo, F; Illek, J and Farkašova, Z (2016). Effects of udder infections with Staphylococcus xylosus and Staphylococcus warneri on the composition and physicochemical changes in cow’s milk. Polish J. Vet. Sci., 19: 841-848.
Vasileiou, NGC; Chatzopoulos, DC; Gougoulis, DA; Sarrou, S; Katsafadou, AI; Spyrou, V; Mavrogianni, VS; Petinaki, E and Fthenakis, GC (2018). Slime-producing staphylococci as causal agents of subclinical mastitis in sheep. Vet. Micr., 224: 93-99.