ارتباط پلی مورفیسم ژنتیکی ژن‌های تشکیل استخوان با دیسپلازی مفصل ران سگ

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: دیسپلازی مفصل ران سگ (CHD) یک اختلال ارتوپدیک است که با سستی غیر طبیعی مفصل ران شناخته می‌شود. این عارضه یک اختلال چند عاملی و پلی ژنیک در نظر گرفته می‌شود که غالبا نژادهای سگ با جثه بزرگ و متوسط را درگیر می‌کند. هدف: هدف از این مطالعه شناسایی پلی مورفیسم مرتبط با CHD در مناطق کروموزومی در CFA19، CFA24، CFA26 و CFA34 بود. روش کار: نمونه‌ خون از 60 قلاده سگ از نژادهای مختلف شامل 46 مورد درگیر و 14 شاهد، اخذ و تعیین ژنوتیپ شد. پس از توالی یابی و شناسایی پلی مورفیسم تک نوکلئوتیدی (SNP) در نواحی هدف، آنالیز انفرادی SNP با روش آماری c2 بر اساس مقایسه فراوانی آلل‌ها در موارد درگیر و شاهد انجام شد. نتایج: ارتباط معنی‌داری بین CHD و T/C SNP در CFA19 که حاوی ژن‌های دخیل در متابولیسم استخوان است مشاهده شد. هیچ ارتباط معنی‌دار دیگری در این مطالعه یافت نشد و SNPهایی که قبلا شناسایی شده‌اند، نمی‌توانند در ارتباط با CHD، تایید شوند. نتیجه‌گیری: به تحقیقات بیشتری جهت شناسایی پلی مورفیسم مرتبط با CHD به منظور توسعه یک رهیافت گزینشی و تشخیص مبتنی بر ژنوتیپ، نیاز است.

کلیدواژه‌ها

موضوعات


Baguma-Nibasheka, M; MacFarlane, LA and Murphy, PR (2012). Regulation of fibroblast growth factor-2 expression and cell cycle progression by an endogenous antisense RNA. Genes. 3: 505-520.
Bartolome, N; Segarra, S; Artieda, M; Francino, O; Sanchez, E; Szczypiorska, M; Casellas, J; Tejedor, D; Cerdeira, J; Martinez, A; Velasco, A and Sanchez, A (2015). A genetic predictive model for canine hip dysplasia: integration of genome wide association study (GWAS) and candidate gene approaches. PLoS ONE. 10: e0122558. https://doi.org/10.1371/journal.pone.0122558.
Boyce, BF; Xing, L; Yao, Z; Yamashita, T; Shakespeare, WC; Wang, Y; Metcalf, CA; Sundaramoorthi, R; Dalgarno, DC; Iuliucci, JD and Sawyer, TK(2006). SRC inhibitors in metastatic bone disease. Clin. Cancer Res., 12: 6291-6295.
Chase, K; Lawler, DF; Adler, FR; Ostrander, EA and Lark, KG (2004). Bilaterally asymmetric effects of quantitative trait loci (QTLs): QTLs tahat affect laxity in the right versus left coxofemoral (hip) joints of the dog (Canis familiaris). Am. J. Med. Genet. A. 124: 239-247.
Chase, K; Lawler, DF; Carrier, DR and Lark, KG (2005). Genetic regulation of osteoarthritis: a QTL regulating cranial and caudal acetabular osteophyte formation in the hip joint of the dog (Canis familiaris). Am. J. Med. Genet. A. 135: 334-335.
Fels, L and Distl, O (2014). Identification and validation of quantitative trait loci (QTL) for canine hip dysplasia (CHD) in German Shepherd dogs. PLOS ONE. 9: e96618. https://doi.or/10.1371/journal.pone.0096618.
Friedenberg, SG; Zhu, L; Zhang, Z; Foels, WV; Schweitzer, PA; Wang, W; Fisher, PJ; Dykes, NL; Corey, E; Vernier-Singer, M; Jung, SW; Sheng, X; Hunter, LS; McDonough, SP; Lust, G; Bliss, SP; Krotscheck, U; Gunn, TM and Todhunter, RJ (2011). Evaluation of a fibrillin 2 gene haplotype associated with hip dysplasia and incipient osteoarthritis in dogs. Am. J. Vet. Res., 72: 530-540.
Fries, CL and Remedios, AM (1995). The pathogenesis and diagnosis of canine hip dysplasia: a review. Can. Vet. J., 36: 494-502.
Guo, G; Zhou, Z; Wang, Y; Zhao, K; Zhu, L; Lust, G; Hunter, L; Friedenberg, S; Li, J; Zhang, Y; Harris, S; Jones, P; Sandler, J; Krotscheck, U; Todhunter, R and Zhang, Z (2011). Canine hip dysplasia is predictable by genotyping. Osteoarthr. Cartilage. 19: 420-429.
Hou, Y; Wang, Y; Lu, X; Zhang, X; Zhao, Q; Todhunter, RJ and Zhang, Z (2013). Monitoring hip and elbow dysplasia achieved modest genetic improvement of 74 dog breeds over 40 years in USA. PLOS ONE. 8:e76390. https://doi.org/10.1371/journal.pone.0076390.
Janutta, V; Hamann, H and Distl, O (2006). Complex segregation analysis of canine hip dysplasia in German shepherd dogs. J. Hered., 97: 13-20.
Kaneene, JB; Mostosky, UV and Miller, R (2009). Update of a retrospective cohort study of changes in hip joint phenotype of dogs evaluated by the OFA in The United States, 1989-2003. Vet. Surg., 38: 398-405.
Lavrijsen, ICM; Leegwater, PAJ; Martin, AJ; Harris, SJ; Tryfonidou, MA; Heuven, HCM and Hazewinkel, HAW (2014). Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers. PLOS ONE. 9: e87735. https://doi.org/10.1371/journal.pone.0087735.
Lewis, TW; Blott, SC and Woolliams, JA (2010). Genetic evaluation of hip score in UK Labrador Retrievers. PLOS ONE. 5: e12797. https://doi.org/10.1371/journal.pone. 0012797.
Lewis, TW; Woolliams, JA and Blott, SC (2010). Genetic evaluation of the nine component features of hip score in UK Labrador Retrievers. PLOS ONE. 5: e13610. https:// doi.org/10.1371/journal.pone.0013610.
Liu, L; Channavajhala, PL; Rao, VR; Moutsatsos, I; Wu, L; Zhang, Y; Lin, LL and Qiu, Y (2009). Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochim. Biophys. Acta. 1794: 1485-1495.
Maki, K; Janss, LLG; Groen, AF; Liinamo, AE and Ojala, M (2004). An indication of major genes affecting hip and elbow dysplasia in four Finnish dog populations. Hered., 92: 402-408.
Marschall, Y and Distl, O (2007). Mapping quantitative trait loci for canine hip dysplasia in German Shepherd dogs. Mamm. Genome. 18: 861-870.
Miyazaki, T; Tanaka, S; Sanjay, A and Baron, R (2006). The role of c-Src kinase in the regulation of osteoclast function. Mod. Rheumatol., 16: 68-74.
Nakano, R; Edamura, K; Nakayama, T; Narita, T; Okabayashi, K and Sugiya, H (2015). Fibroblast growth factor receptor-2 vontributes to the basic fibroblast growth factor-induced neuronal differentiation in canine bone marrow stromal cells via phosphoinositide 3-Kinase/Akt signaling pathway. PLOS ONE. 10: e0141581. doi: 10.1371/journal.pone.0141581.
Pfahler, S and Distl, O (2012). Identification of quantitative trait loci (QTL) for canine hip dysplasia and canine elbow dysplasia in Bernese mountain dogs. PLOS ONE. 7: e49782. https://doi.org/10.1371/journal.pone.0049782.
Sánchez-Molano, E; Pong-Wong, R; Clements, DN; Blott, SC; Wiener, P and Wooliams, JA (2015). Genomic prediction of traits related to canine hip dysplasia. Front. Genet., 6: 97. doi: 10.3389/fgene.2015.00097.
Sánchez-Molano, E; Woolliams, JA; Blott, SC and Wiener, P (2013). Assessing the impact of genomic selection against hip dysplasia in the Labrador Retriever dog. J. Anim. Breed. Genet., 131: 134-145.
Sánchez-Molano, E; Woolliams, JA; Pong-Wong, R; Clements, DN; Blott, SC and Wiener, P (2014). Quantitative trait loci mapping for canine hip dysplasia and its related traits in UK Labrador Retrievers. BMC Genomics. 15: 833.
Stock, KF and Distl, O (2010). Simulation study on the effects of excluding offspring information for genetic evaluation versus using genomic markers for selection in dog breeding. J. Anim. Breed. Genet., 127: 42-52.
Tamura, K; Stecher, G; Peterson, D; Filipski, A and Kumar, S (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729.
Todhunter, RJ; Mateescu, R; Lust, G; Burton-Wurster, NI; Dykes, NL; Bliss, SP; Williams, AJ; Vernier-Singer, M; Corey, E; Harjes, C; Quaas, RL; Zhang, Z; Gilbert, RO; Volkman, D; Casella, G; Wu, R and Acland, GM (2005). Quantitative trait loci for hip dysplasia in a crossbred canine pedigree. Mamm. Genome. 16: 720-730.
Wang, G and Beier, F (2005). Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte pro-liferation, hypertrophy, and apoptosis. J. Bone Min. Res., 20: 1022-1031.
Willis, MB (1997). A review of the progress in canine hip-dysplasia control in Britain. J. Am. Vet. Med. Assoc., 210: 1480-1482.
Zhou, Z; Sheng, X; Zhang, Z; Zhao, K; Zhu, L; Guo, G; Friedenberg, SG; Hunter, LS; Vandenberg-Foels, WS; Hornbuckle, WE; Krotscheck, U; Corey, E; Moise, NS; Dykes, NL; Li, J; Xu, S; Du, L; Wang, Y; Sandler, J; Acland, GM; Lust, G and Todhunter, RJ (2010). Differential genetic regulation of canine hip dysplasia and osteoarthritis. PLOS ONE. 5: e13219. https://doi.org/10. 1371/journal.pone.0013219.