Brochet, M; Couvé, E; Glaser, P; Guédon, G and Payot, S (2008). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J. Bacteriol., 190: 6913-6917.
Brodeur, BR; Boyer, M; Charlebois, I; Hamel, J; Couture, F; Rioux, CR and Martin, D (2000). Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect. Immun., 68: 5610-5618.
Du, L and Hao, YQ (2016). Drug resistance and tetracycline resistance gene identification of Streptococcus agalactiae isolates from bovine in Inner Mongolia. J. Huazhong Agr. Univ., 01: 114-119.
Fan, WH; Zhao, MC and Liu, J (2014). Antimicrobial resistance in 42 cases of neonate septicemia caused by Streptococcus agalactiae infection. Int. J. Lab. Med., 17: 2309-2310.
Herrera Ramírez, JC; De la Mora, A; De la Mora Valle, A; Lopez-Valencia, G; Hurtado, RM; Rentería Evangelista, TB; Rodríguez Castillo, JL; Rodríguez Gardea, A; Gómez Gómez, SD and Medina-Basulto, GE (2017). Immunopathological evaluation of recombinant mycobacterial antigen Hsp65 expressed in Lactococcus lactis as a novel vaccine candidate. Iran. J. Vet. Res., 18: 197-202.
Khara, B and Narayana, VL (2017). Pilus biogenesis of Gram-positive bacteria: roles of sortase and implication for assembly. Protein Sci., 26: 1458-1473.
Khare, B; Krishnan, V and Rajashankar, KR (2011). Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1. PLoS One. 6: e22995.
Khodaei, F; Najafi, M and Hasni, A (2018). Pilus-encoding islets in S. agalactiae and its association with antibacterial resistance and serotype distribution. Microb. Pathog., 116: 189-194.
Konto-Ghiorghi, Y; Mairey, E and Mallet, A (2009). Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 5: e1000422.
Li, HS; Yu, J and Luo, JY (2012). Serotype distribution of bovine Streptococcus agalactiae and its drug resistance to antibiotics in China. Chin. Anim. Husb. & Vet. Med., 01: 164-167.
Mandlik, A; Swierczynski, A; Das, A and Ton-That, H (2008). Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol., 16: 33-40.
Martins, ER; Andreu, A; Melo-Cristino, J and Ramirez, M (2013). Distribution of pilus islands in Streptococcus agalactiae that cause human infections: insights into evolution and implication for vaccine development. Clin. Vaccine Immunol., 20: 313-316.
Mukherjee, F; Prasad, A; Bahekar, VS; Rana, SK; Rajendra, L; Sharma, GK and Srinivasan, VA (2017). Evaluation of immunogenicity and protective efficacy of a liposome containing Brucella abortus S19 outer membrane protein in BALB/c mice. Iran. J. Vet. Res., 17: 1-7.
Rosini, R; Rinaudo, CD and Soriani, M (2006). Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol. Microbiol., 61: 126-141.
Sharma, P; Lata, H and Arya, DK (2013). Role of pilus proteins in adherence and invasion of Streptococcus agalactiae to the lung and cervical epithelial cells. J. Biol. Chem., 288: 4023-4034.
Xicohtencatl-Cortés, J; Lyons, S; Chaparro, AP; Hernández, DR; Saldaña, Z; Ledesma, MA; Rendón, MA; Gewirtz, AT; Klose, KE and Girón, JA (2006). Identification of proinflammatory flagellin proteins in supernatants of Vibrio cholerae O1 by proteomics analysis. Mol. Cell Proteomics. 5: 2374-2383.
Yang, HH and Li, J (2016). Clinical and prognostic analysis of sepsis caused by Streptococcus agalactiae combined with purulent meningitis in 12 neonates. J. Clin. Pedia., 03: 181-184.