Alippi, AM; López, AC; Reynaldi, FJ; Grasso, DH and Aguilar, OM (2007). Evidence for plasmid-mediated tetracycline resistance in
Paenibacillus larvae, the causal agent of American Foulbrood (AFB) disease in honeybees. Vet. Microbiol., 125: 290-303.
http://doi.org/10.1016/j. vetmic.2007.05.018.
Ayoub, ZN; Saeed, AY and Vandame, J (2013). Detection of American foulbrood disease in the apiaries of Duhok province, Kurdistan region, Iraq. IOSR-J. Agri. Vet. Sci., 6: 18-21.
Bajpai, VK; Han, JH; Rather, IA; Park, C; Lim, J; Paek, WK; Lee, JS; Yoon, JI and Park, YH (2016). Characterization and antibacterial potential of lactic acid bacterium Pediococcus pentosaceus 4I1 isolated from freshwater fish Zacco koreanus. Front. Microbiol., 7: 1-15. http://doi.org/10.3389/fmicb.2016.02037.
Balouiri, M; Sadiki, M and Ibnsouda, SK (2016). Methods for
in vitro evaluating antimicrobial activity: a review. J. Pharmaceut. Anal., 6: 71-79.
http://doi.org/10.1016/j.jpha. 2015.11.005.
Cai, W; De La Fuente, L and Arias, CR (2013). Biofilm formation by the fish pathogen
flavobacterium columnare: development and parameters affecting surface attachment. Appl. Environ. Microbiol., 79: 5633-5642.
http://doi.org/ 10.1128/AEM.01192-13.
Chen, L; Bromberger, PD; Nieuwenhuiys, G and Hatti-Kaul, R (2016). Redox balance in
Lactobacillus reuteri DSM20016: roles of iron-dependent alcohol dehydrogenases in glucose/glycerol metabolism. PLoS One. 11: 1-20.
http://doi.org/10.1371/journal.pone. 0168107.
Cleusix, V; Lacroix, C; Vollenweider, S; Duboux, M and Le Blay, G (2007). Inhibitory activity spectrum of reuterin produced by
Lactobacillus reuteri against intestinal bacteria. BMC Microbiol., 7: 1-9.
http://doi.org/10.1186/ 1471-2180-7-101.
Cornman, RS; Lopez, D and Evans, JD (2013). Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae. PloS One. 8: e65424. http://doi.org/10.1371/journal.pone.0065424.
Dasari, S; Shouri, RND; Wudayagiri, R and Valluru, L (2014). Antimicrobial activity of
Lactobacillus against microbial flora of cervicovaginal infections. Asian Pac. J. Trop. Dis., 4: 18-24.
http://doi.org/10.1016/S2222-1808 (14)60307-8.
Dhanani, AS and Bagchi, T (2013).
Lactobacillus plantarum CS24.2 prevents
Escherichia coli adhesion to HT-29 cells and also down-regulates enteropathogen-induced tumor necrosis factor-α and interleukin-8 expression. Microbiol. Immunol., 57: 309-315.
http://doi.org/10.1111/1348-0421. 12038.
Dingman, DW and Stahly, DP (1983). Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl. Environ. Microbiol., 46: 860-869.
Fang, K; Jin, X and Hong, SH (2018). Probiotic
Escherichia coli inhibits biofilm formation of pathogenic
E. coli via extracellular activity of DegP. Sci. Rep., 8: 1-12.
http://doi. org/10.1038/s41598-018-23180-1.
Garrett, TR; Bhakoo, M and Zhang, Z (2008). Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. Mater., 18: 1049-1056. http://doi.org/10.1016/j.pnsc.2008.04.001.
Gómez, NC; Ramiro, JMP; Quecan, BXV and de Melo Franco, BDG (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7 biofilms formation. Front. Microbiol., 7: 1-15. http://doi.org/10.3389/fmicb.2016.00863.
Hamdi, C; Essanaa, J; Sansonno, L; Crotti, E; Abdi, K; Barbouche, N; Balloi, A; Gonella, E; Alma, A; Daffonchio, D; Boudabous, A and Cherif, A (2013). Genetic and biochemical diversity of
Paenibacillus larvae isolated from tunisian infected honey bee broods. BioMed. Res. Int., 2013: 479893.
http://doi.org/10.1155/2013/ 479893.
Jaouani, I; Abbassi, MS; Alessandria, V; Bouraoui, J; Ben Salem, R; Kilani, H; Mansouri, R; Messadi, L and Cocolin, L (2014). High inhibition of Paenibacillus larvae and Listeria monocytogenes by Enterococcus isolated from different sources in tunisia and identification of their bacteriocin genes. Lett. Appl. Microbio., 59: 17-25. http://doi.org/10.1111/lam.12239.
Joo, HS and Otto, M (2012). Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem. Biol., 19: 1503-1513. http://doi.org/10.1016/j.chembiol.2012.10.022.
Lash, BW; Tami, H and Gouama, H (2005). Detection and partial charachterization of a broad range bacteriocin produced by
Lactobacillus plantarm ATCC8014. Food Microbiol., 22: 199-204.
http://doi.org/10.1016 J.FM.2004. 03.006.
Mao, DP; Zhou, Q; Chen, CY and Quan, ZX (2012). Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol., 12: 66. http://doi.org/10.1186/1471-2180-12-66.
Morita, H; Toh, H and Fukuda, S (2008). Comparative genome analysis of
Lactobacillus reuteri and
Lactobacillus fermentum reveal a genomic Island for Reuterin and Cobalamin producion. DNA Res., 15: 151-161.
http://doi. org/10.1093/dnares/dsn009.
Mudroňová, D; Rumanovská, K; Toporčák, J; Nemcová, R; Gancarčíková, S and Hajdučková, V (2011). Selection of probiotic Lactobacilli designed for the prevention of American Foubrood. Folia Vet., 4: 127-132.
Pehrson, M; Mancilha, IM and Pereira, C (2015). Antimicrobial activity of probiotic Lactobacillus strains towards gram-negative enteropathogens. Eur. Inte. J. Sci.
Technol., 4: 136-149.
Poppinga, L; Janesch, B; Fünfhaus, A; Sekot, G; Garcia-Gonzalez, E; Hertlein, G; Hedtke, K and Schäffer, CGE (2012). Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. PLoS Path., 8. http://doi.org/10.1371/journal.ppat.1002716.
Vahedi Shahandashti, R; Kasra Kermanshahi, R and Ghadam, P (2016). The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens. Turkish J. Med. Sci., 46: 1188-1196. http://doi.org/10.3906/sag-1505-51.
Wei, Q and Ma, LZ (2013). Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci., 14: 20983-21005. http://doi.org/10.3390/ijms141020983.
Wojnicz, D and Tichaczek-Goska, D (2013). Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Brazilian J. Microbiol., 44: 259-265. http://doi.org/10.1590/S1517-83822013000100037.
Zamani, H; Rahdar, S; Garakoui, SR; Afsah Sahebi, A and Jafari, H (2017). Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens. Pharmac. Biomed. Res., 3: 39-44.