نقش‌های سایتوکروم P450 و P-glycoprotein در فارماکوکینتیک فلورفنیکل در مرغ‌ها

نوع مقاله : مقاله کامل

نویسندگان

چکیده

اثر 3 مهار کننده انتخابی خوراکی فلووکسامین (FLU)، کتوکونازل (KET) و وراپامیل (VER) بر فارماکوکینتیک (PK) فلورفنیکل (FFC) در مرغ‌ها مورد ارزیابی قرار گرفت. مرغ‌ها با محلول سالین (SAL)، FLU (mg/kg 60)، KET (mg/kg 25) یاVER  (mg/kg 9) به صورت خوراکی به مدت 7 روز متوالی تیمار شدند. FCC به صورت خوراکی و تک دوز (mg/kg 30) به مرغ‌ها تجویز شد. نمونه خون از هر مرغ 0 الی 12 ساعت پس از تجویز FCC گرفته و غلظت پلاسمایی FCC با روش کروماتوگرافی مایع با کارایی بالا (HPLC) اندازه‌گیری شد. تجویز هم زمان KET و FCC موجب افزایش AUC مربوط به FCC و کاهش CLs آن و همچنین وراپامیل موجب افزایش Cmax مربوط به FCC شد، در حالی که AUC، CLs و Cmax مربوط به FCC در حضور FLU تغییری نکرد. داده‌ها نشان داد که بر خلاف P-gp و CYP 1A، CYP 3A نقش کلیدی در فارماکوکینتیک FCC ایفا می‌کند. بر اساس نتایج حاصله در صورتی که FCC همراه با سایر داروهایی که سوبسترا، القا کننده و یا مهار کننده CYP 3A و P-gp هستند مصرف شود، امکان رخ داد عوارض ناشی از تداخل دارویی وجود دارد.

کلیدواژه‌ها


Afifi, NA and AboEl-Sooud, K (1997). Tissue concentration and pharmacokinetics of florfenicol in broiler chickens. Br. Poult. Sci., 38: 425-428.
Anadón, A; Martínez, MA; Martínez, M; Ríos, A; Caballero, V; Ares, I and Martínez-Larrañaga, MR (2008). Plasma and tissue depletion of florfenicol and florfenicol-amine in chickens. J. Agr. Food Chem., 56: 11049-11056.
Atef, M; El-genda, YI; Amer, AMM and El-Aty, AMA (2001). Disposition kinetics of florfenicol in goats by using two analytical methods. J. Vet. Med. A Physiol. Pathol. Clin. Med., 48: 129-136.
Athukuri, BL and Neerati, P (2017). Enhanced oral bio-availability of domperidone with piperine in male Wistar rats: involvement of CYP3A1 and P-gp inhibition. J. Pharm. Pharm. Sci., 20: 28-37.
Azizi, J; Ismail, S and Mansor, SM (2013). Mitragyna speciosa Korth leaves extracts induced the CYP450 catalyzed aminopyrine-N-demethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. Drug Metabol. Drug Interact., 28: 95-105.
Cortright, KA and Craigmill, AL (2006). Cytochrome P450-dependent metabolism of midazolam in hepatic microsomes from chickens, turkeys, pheasant and bobwhite quail. J. Vet. Pharmacol. Ther., 29: 469-476.
Davidson Peiris, E and Wusirika, R (2017). A case report of compound heterozygous CYP24A1 mutations leading to nephrolithiasis successfully treated with ketoconazole. Case Rep. Nephrol. Dial., 7: 167-171.
Filazi, A; Sireli, UT; Yurdakok, B; Aydin, FG and Kucukosmanoglu, AG (2014). Depletion of florfenicol and florfenicol amine residues in chicken eggs. Br. Poult. Sci., 55: 460-465.
Ghoddusi, A; Nayeri Fasaei, B; Karimi, V; Ashrafi Tamai, I; Moulana, Z and Zahraei Salehi, T (2015). Molecular identification of Salmonella infantis isolated from backyard chickens and detection of their resistance genesby PCR. Iran. J. Vet. Res., 16: 293-297.
He, X and Feng, S (2015). Role of metabolic enzymes P450 (CYP) on activating procarcinogen and their poly-morphisms on the risk of cancers. Curr. Drug Metab., 16: 850-863.
Ismail, M and El-Kattan, YA (2009). Comparative pharma-cokinetics of florfenicol in the chicken, pigeon and quail. Br. Poult. Sci., 50: 144-149.
Ledwitch, KV; Barnes, RW and Roberts, AG (2016). Unravelling the complex drug-drug interactions of the cardiovascular drugs, verapamil and digoxin, with P-glycoprotein. Biosci. Rep., 36; e00309.
Lee, J; Kim, AH; Yi, S; Lee, S; Yoon, SH; Yu, KS; Jang, IJ and Cho, JY (2017). Distribution of exogenous and endogenous CYP3A markers and related factors in healthy males and females. AAPS J., doi: 10.1208/s12248-017-0090-8.
Liu, N; Guo, M; Mo, F; Sun, YH; Yuan, Z; Cao, LH and Jiang, SX (2011). Involvement of P-glycoprotein and cytochrome P450 3A in the metabolism of florfenicol of rabbits. J. Vet. Pharmacol. Therap., 35: 202-205.
NRC (1994). Nutrient requirements of poultry. 9th Rev. Edn., Washington, D.C., Natl. Acad. Press. PP: 19-34.
Pal, D and Mitra, AK (2006). MDR- and CYP3A4-mediated drug-drug interactions. J. Neuroimmune Pharmacol., 1: 323-339.
Poźniak, B; Pawłowski, P; Pasławska, U; Grabowski, T; Suszko, A; Lis, M and Świtała, M (2017). The influence of rapid growth in broilers on florfenicol pharmacokinetics-allometric modelling of the pharmacokinetic and haemo-dynamic parameters. Br. Poult. Sci., 58: 184-191.
Razmyar, J and Zamani, AH (2016). An outbreak of yolk sac infection and dead-in-shell mortality in common canary (Serinus canaria) caused by Klebsiella pneumoniae. Iran. J. Vet. Res., 17: 141-143.
Shen, J; Hu, D; Wu, X and Coats, JR (2003). Bioavailability and pharmacokinetics of florfenicol in broiler chickens. Vet. Pharmacol. Ther., 26: 337-341.
Shin, SJ; Kang, SG; Nabin, R; Kang, ML and Yoo, HS (2005). Evaluation of the antimicrobial activity of florfenicol against bacteria isolated from bovine and porcine respiratory disease. Vet. Microbiol., 106: 73-77.
Soback, S; Paape, MJ; Filep, R and Varma, KJ (1995). Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administra-tion. J. Vet. Pharmacol. Ther., 18: 413-417.
Suo, XB; Zhang, H and Wang, YQ (2007). HPLC determination of andrographolide in rat whole blood: study on the pharmacokinetics of andrographolide incorporated in liposomes and tablets. Biomed. Chromatogr., 21: 730-734.
Tsuji, PA and Walle, T (2007). Benzo[a]pyrene-induced cytochrome P450 1A and DNA binding in cultured trout hepatocytes-inhibition by plant polyphenols. Chem. Biol. Interact., 169: 25-31.
Verner-Jeffreys, DW; Brazier, T; Perez, RY; Ryder, D; Card, RM; Welch, TJ; Hoare, R; Ngo, T; McLaren, N; Ellis, R; Bartie, KL; Feist, SW; Rowe, WMP; Adams, A and Thompson, KD (2017). Detection of the florfenicol resistance gene floR in Chryseobacterium isolates from rainbow trout. Exception to the general rule? FEMS Microbiol. Ecol., 93(4). doi: 10.1093/femsec/fix015.
Wang, GY; Tu, P; Chen, X; Guo, YG and Jiang, SX (2013). Effect of three polyether ionophores on pharmacokinetics of florfenicol in male broilers. J. Vet. Pharmacol. Ther., 36: 494-501.
Wei, CF; Shien, JH; Chang, SK and Chou, CC (2016). Florfenicol as a modulator enhancing antimicrobial activity: example using combination with Thiamphenicol against Pasteurella multocida. Front Microbiol., 7: 389.
Yamaoka, K; Nakagawa, T and Uno, T (1978). Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Food Biochem., 100: 609-618.
Yang, YC; Zhang, WG; Tang, ZM; Liu, CX; Sun, RY and Yu, ZL (1988). 3P87 practical pharmacokinetics program. Information of the CPA. 5: 67.
Yasui-Furukori, N; Takahata, T; Nakagami, T; Yoshiya, G; Inoue, Y; Kaneko, S and Tateishi, T (2004). Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br. J. Clin. Pharmacol., 57: 487-494.
Zhang, Y; Wang, C; Liu, Z; Meng, Q; Huo, X; Liu, Q; Sun, P; Yang, X; Sun, H; Ma, X and Liu, K (2017). P-gp is involved in the intestinal absorption and biliary excretion of afatinib in vitro and in rats. Pharmacol. Rep., 70: 243-250.
Zhou, SF (2008). Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab., 9: 310-322.