اثر روش‌های مختلف فعال سازی بر نرخ تقسیم و تولید بلاستوسیت از تخمک‌های بزی

نوع مقاله : مقاله کامل

نویسندگان

چکیده

هدف از انجام مطالعه حاضر بررسی اثر فعال کننده‌های شیمیایی متفاوت همراه با 6-DMAP بر بالغ سازی تخمک‌های بزی در شرایط آزمایشگاهی بود. از 4332 تخمدان، تعداد 14235 عدد توده‌های تخمک کومولوس (COCs) جمع‌آوری و به منظور بالغ سازی در محیط  TCM-199 حاوی هورمون محرک فولیکول (FSH) (5 µg/ml)، هورمون لوتینیزینگ (LH) (10 µg/ml)، β17-استرادیول (1 µg/ml) حاوی 10% سرم جنین گاوی، 10% مایع فولیکولار و آلبومین سرم گاوی (BSA) (3 mg/ml) در دمای 5/38 درجه سانتیگراد و در انکوباتور دارای اتمسفر مرطوب و 5% دی اکسید کربن به مدت 27 ساعت قرار داده شدند. در گروه 1 (شاهد)، 3117 تخمک بارور شده در شرایط آزمایشگاهی به همراه اسپرم‌ها، در محیط بارورسازی TALP به مدت 18 ساعت انکوبه شدند. در گروه 2، 3563 تخمک بارور شده در شرایط آزمایشگاهی با اتانول 7% به مدت 5 الی 7 دقیقه فعال و به دنبال آن با mM DMAP 20 در محیط CR2aa به مدت 4 ساعت تیمار شدند. در گروه 3، 3109 تخمک بارور شده در شرایط آزمایشگاهی، با mM 5 یونومایسین به مدت 5 الی 7 دقیقه فعال و به دنبال آن با mM DMAP 20 در محیط CR2aa به مدت 4 ساعت تیمار شدند. در گروه 4 نیز 3455 تخمک بارور شده در شرایط آزمایشگاهی، با μM 5 کلسیم یونوفور به مدت 5 الی 7 دقیقه فعال و به دنبال آن با mM DMAP 20 در محیط CR2aa به مدت 4 ساعت تیمار شدند. تخمک‌ها در قطرات µL 50 از محیط research vitro cleave (RVCL) medium به منظور نمو رویان‌ها کشت داده شدند. نرخ تقسیم و همچنین تولید مرولا و بلاستوسیت در گروه‌های 1، 2، 3 و 4 به ترتیب 37/2% ± 07/26، 91/2 ± 91/14 و 71/0% ± 45/1، 79/3% ± 57/49،  38/2% ± 07/20 و 42/1% ± 29/5، 59/3% ± 18/50، 87/2% ± 26/15 و 72/0% ± 85/1 و 30/2% ± 26/80، 67/2 ± 33/35 و 89/0% ± 10/7 بود. نتایج حاصل از این مطالعه نشان داد که فعال سازی تخمک‌های بارور شده در شرایط آزمایشگاهی با mM 5 کلسیم یونوفور به مدت 5 الی 7 دقیقه و سپس تیمار آن‌ها با mM DMAP 20 به مدت 4 ساعت بیشترین اثر مطلوب را بر تولید پارتنوژنیک رویان‌های بزی دارد. � بیشترین اثر مطلوب را بر تولید پارتنوژنیک رویان‌های بزی دارد.

کلیدواژه‌ها


Abdoon, AS; Ghanem, N; Kandila, OM; Gad, A; Schellander, K and Tesfaye, D (2012). cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology. 77: 1240-1251.
Abdullah, RB; Wan Khadijah, WE and Kwong, PJ (2011). Comparison of intra- and interspecies nuclear transfer techniques in the production of cloned caprine embryos. Small Rumin. Res., 98: 196-200.
De, AK; Garg, S; Singhala, DK; Malika, H; Mukherjee, A; Jena, MK; Kumar, S; Kaushik, JK; Mohanty, AK; Das, BC; Bag, S; Bhanja, SK and Malakar, D (2013). Derivation of goat embryonic stem cell-like cell lines from in vitro produced parthenogenetic blastocysts. Small Rumin. Res., 113: 145-153.
De, LFR and King, WA (1998). Developmental consequences of karyokinesis without cytokinesis during the first mitotic cell cycle of bovine parthenotes. Biol. Reprod., 58: 952-962.
De, AK; Malakar, D; Jena, MK; Dutta, R; Garg, S and Akshey, YS (2012). Zona-free and with-zonaparthenogenetic embryo production in goat (Capra hircus) - effect of activation methods, culture systems and culture media. Livest. Sci., 143: 35-42.
Dyban, AP and Baranow, WS (1989). Haploidie. In: Dyban, AP and Baranow, WS (Eds.), The cytogenetics of the sucker – embryogenesis. (1st Edn.), Pareys Studientexte64, Berlin und Hamburg, Verlag Paul Parey. PP: 1-43.
Funahashi, H; Cantley, T; Stumpf, TT; Terlouw, SL; Rieke, A and Day, BN (1994). In vitro development of in vitro matured pig oocytes following chemical activation or in vitro fertilization. Biol. Reprod., 50: 1072-1077.
Hosseini, SM; Hajian, M; Moulavi, F; Shahverdi, AH and Nasr-Esfahani, MH (2008). Optimized combined electrical-chemical parthenogenetic activation for in vitro matured bovine oocytes. Anim. Reprod. Sci., 108: 122-133.
Jena, MK; Malakar, D; De, AK; Garg, S; Akshey, YS; Dutta, R; Sahu, S; Mohanty, AK and Kaushik, JK (2012). Handmade cloned and parthenogenetic goat embryos – A comparison of different culture media and donor cells. Small Rumin. Res., 105: 255-262.
Kharche, SD and Birade, HS (2013). Parthenogenesis and activation of mammalian oocytes for in vitro embryo production: a review. Adv. Bio. Sci. Biotechnol., 4: 170-182.
Kharche, SD; Goel, AK; Jindal, SK; Goel, P and Jha, BK (2011). Birth of twin kids following transfer of in-vitro produced caprine embryos. Indian J. Anim. Sci., 81: 1132-1134.
Kharche, SD; Goel, AK; Jindal, SK; Jha, BK and Goel, P (2013). Assessment of parthenogenetic embryo production by activation of in-vitro matured caprine oocytes with different concentrations of ethanol. Small Rumin. Res., 111: 100-103.
Kharche, SD; Goel, AK; Jindal, SK; Sinha, NK and Yadav, P (2008). Effect of somatic cells co-cultures on cleavage and development of in vitro fertilized caprine embryos. Indian J. Anim. Sci., 78: 686-692.
Kharche, SD; Goel, AK; Jindal, SK; Ranjan, R; Rout, PK; Agarwal, SK; Goel, P; Saraswat, S; Vijh, RK; Malakar, D; Bag, S; Sarkhel, B and Bhanja, SK (2014). Development of parthenote following in vivo transfer of embryos in Capra hircus. In Vitro Cell. Dev. Biol., 50: 893-898.
Kharche, S; Pathak, J; Agarwal, S; Kushwah, B and Sikarwar, AKS (2016). Effect of Ca ionophore on blastocyst production following intracytoplasmic sperm injection in caprine oocytes. Reprod. Dom. Anim., 51: 611-617.
Kim, NH; Simerly, C; Funahashi, H; Schatten, G and Day, BN (1996). Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol. Reprod., 54: 1397-1404.
King, WA; Xu, KP; Sirard, MA; Greve, T; Leclerc, P; Lambert, RD and Jacques, P (1988). Cytogenetic study of parthenogenetically activated bovine oocytes matured in vitro and in vitro. Gamete Res., 20: 265-274.
Kono, T; Iwasaki, S and Nakahara, T (1989). Parthenogenetic activation by electric impulse of bovine oocytes matured in vitro. Theriogenology. 32: 569-576.
Kouamo, J and Kharche, SD (2015). A comparative study of parthenogenetic activation and in vitro fertilization of in vitro matured caprine oocytes. Iran. J. Vet. Res., 16: 20-24.
Lee, SR; Kim, JW; Kim, BS; Kim, MO; Kim, SH; Yoo, DH; Shin, MJ; Lee, S; Park, YS; Park, YB; Ha, JH and Ryoo, ZY (2007). The parthenogenetic activation of canine oocytes with Ca-EDTA by various culture periods and concentrations. Theriogenology. 67: 698-703.
Liu, L and Yang, X (1999). Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. Biol. Reprod., 61: 1-7.
Loi, P; Ledda, S; Fulka, JJ; Cappai, P and Moor, RM (1998). Development of parthenogenetic and cloned ovine embryos; effect of activation protocols. Biol. Reprod., 58: 1177-1187.
Machaty, Z; Funahashi, H; Mayes, MA; Day, B and Prather, RS (1996). Effects of injecting calcium chloride into in vitro matured porcine oocytes. Biol. Reprod., 54: 316-322.
Max, A; Grabiec, A and Tischner, M (2007). Partheno-genetic activation of domestic cat oocytes using ethanol, calcium ionophore, cycloheximide and a magnetic field. Theriogenology. 67: 795-800.
Mayes, MA; Stogsdill, PL and Prather, RS (1995). Partheno-genic activation of pig oocytes by protein kinase inhibition. Biol. Reprod., 53: 270-275.
Meo, SC; Leal, CLV and Garcia, JM (2004). Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Anim. Reprod. Sci., 81: 35-46.
Nussbaum, DJ and Prather, RS (1995). Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol. Reprod. Dev., 195: 70-75.
Ongeri, EM; Bormann, CL; Butler, RE; Melican, D; Gavin, WG; Echelard, Y; Krisher, RL and Behboodi, E (2001). Development of goat embryos after in vitro fertilization and parthenogenetic activation by different methods. Theriogenology. 55: 1933-1945.
Pathak, J; Kharche, SD; Goel, AK and Jindal, SK (2013). A comparative study on parthenogenetic activation and embryo production from in vitro matured caprine oocytes. Small Rumin. Res., 113: 136-140.
Presicce, GA and Yang, X (1994). Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 h and activated with combined ethanol and cycloheximide. Mol. Reprod. Dev., 37: 61-68.
Sato, K; Yoshida, M and Miyoshi, K (2005). Utility of ultrasound stimulation for activation of pig oocytes matured in vitro. Mol. Reprod. Dev., 72: 396-403.
Sharma, JR; Agarwal, S; Kharche, SD; Goel, AK; Jindal, SK and Agarwal, SK (2015). Effect of different activators on development of activated in vitro matured caprine
oocytes. Iran. J. Vet. Res., 16: 42-46.
Shiina, Y; Kaneda, M; Matsuyama, K; Tanaka, K; Hiroi, M and Doi, K (1993). Role of extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes. J. Reprod. Fertil., 97: 143-150.
Singh, R; Kumar, K; Mahapatra, PS; Kumar, M; Agarwal, P; Bhure, SK; Malakar, D; Bhanja, SK and Bag, S (2014). Microarray analysis of gene expression in parthenotes and in vitro-derived goat embryos. Theriogenology. 81: 854-860.
Soloy, E; Kanka, J; Viuff, D; Smith, SD; Callesen, H and Greve, T (1997). Time course of pronuclear deoxyribo-nucleic acid synthesis in parthenogenetically activated bovine oocytes. Biol. Reprod., 57: 27-35.
Srirattana, K; Sripunya, N; Sangmalee, A; Imsoonthornruksa, S; Liang, Y; Ketudat-Cairns, M and Parnpai, R (2013). Developmental potential of vitrified goat oocytes following somatic cell nuclear transfer and parthenogenetic activation. Small Rumin. Res., 112: 141-146.
Wang, Z; Wang, W; Yu, S and Xu, ZR (2008). Effects of different activation protocols on preimplantation development, apoptosis and ploidy of bovine parthenogenetic embryos. Anim. Reprod. Sci., 105: 292-301.
Whitaker, M and Patel, R (1990). Calcium and cell cycle control. Development. 108: 525-542.
White, KL and Yue, C (1996). Intracellular receptors and agents that induce activation in bovine oocytes. Theriogenology. 45: 91-100.