ارزیابی مدل موشی اندومتریت با استفاده از جدایه رحمی اشریشیا کولای از بوفالو پس از زایمان

نوع مقاله : مقاله کامل

نویسندگان

چکیده

عفونت بالا رونده رحم با باکتری‌های گرم منفی عامل اندومتریت پس از زایمان در گاو و بوفالو است که به طور نامطلوبی باروری را تحت تاثیر قرار می‌دهد. نظر به اینکه انجام آزمایش‌های کنترل شده در میزبان بومی و اصلی سخت می‌باشد، تکامل یک مدل حیوانی آزمایشگاهی برای اندومتریت گاوی فهم پاتوژنز را تسهیل می‌نماید. بر این اساس، در مطالعه حاضر، 30 موش باکره نژاد آلبینو سوئیسی 5 تا 8 هفته به منظور ارزیابی پتانسیل بیماری‌زایی اشریشیا کولای، جدا شده از بوفالو با زایمان طبیعی پس از زایمان برای القای اندومتریت استفاده شدند. موش‌ها در فاز دی استروس چرخه فحلی به صورت تصادفی به یکی از چهار درمان تلقیح داخل واژنی (100 میکرولیتر) زیر اختصاص داده شدند: EG (گروه درمان)-1: نرمال سالین استریل؛ EG-2، EG-3 و EG-4: اشریشیا کولای به ترتیب 104 × 5/1، 105 و CFU/ml 106، و 36 ساعت پس از تلقیح برای مطالعه ضایعات ماکروسکوپی و میکروسکوپی کشته شدند. تغییرات ظاهری محدود به EG-4 بودند. اندومتریت حاد در 50% EG-3 و        7/66% EG-4 ثبت شد. میزان پیشرفت اندومتریت حاد به طور معنی‌داری در EG-4 (P<0.05) در مقایسه با سایر گروه‌ها بیشتر بود. مطالعه حاضر اثبات نمود که مدل حیوانی برای اندومتریت با تلقیح داخل واژنی CFU/ml 106 × 5/1 اشریشیا کولای در فاز دی استروس می‌تواند در موش تکامل یابد. سهولت تلقیح داخل واژن، عدم درگیری سیستمیک آشکار و میزان بالای عفونت‌زایی از جمله مزایای این مدل می‌باشد.

کلیدواژه‌ها


Agnew, DW; Corbeil, LB; Munson, L; Byrne, BA and Bondurant, RH (2008). A pregnant mouse model for bovine Tri Trichomonas foetus infection. Vet. Pathol., 45: 849-864.
Aisemberg, J; Vercelli, C; Billi, S; Ribeiro, ML; Ogando, D; Meiss, R; McCann, SM; Rettori, V and Franchi, AM (2007). Nitric oxide mediates prostaglandins’ deleterious effect on lipopolysaccharide-triggered murine fetal resorp-tion. Proc. Natl. Acad. Sci. U. S. A., 104: 7534-7539.
Azawi, OI (2010). Uterine infection in buffalo cows: a review. Buffalo Bull., 29: 154-171.
Baldwin, CL and Parent, M (2002). Fundamentals of host immune response against Brucella abortus: what the mouse model has revealed about control of infection. Vet. Microbiol., 90: 367-382.
Bernstein-Hanley, I; Coers, J; Balsara, ZR; Taylor, GA; Starnbach, MN and Dietrich, WF (2006). The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc. Natl. Acad. Sci. U. S. A., 103: 14092-14097.
Bicalho, MLS; Machado, VS; Oikonomou, G; Gilbert, RO and Bicalho, RC (2012). Association between virulence factors of Escherichia coli, Fusobacterium necrophorum, and Arcanobacterium pyogenes and uterine diseases of dairy cows. Vet. Microbiol., 157: 125-131.
Byers, SL; Wiles, MV; Dunn, SL and Taft, RA (2012). Mouse estrous cycle identification tool and images. PLoS One. 7: e35538.
Corbeil, LB (1980). Criteria for development of animal models of diseases of the reproductive system. Am. J. Pathol., 101: S241.
Deb, K; Chaturvedi, MM and Jaiswal, YK (2005). Gram-negative bacterial LPS induced poor uterine receptivity and implantation failure in mouse: alterations in IL-1beta expression in the preimplantation embryo and uterine horns. Infect. Dis. Obstet. Gynecol., 13: 125-133.
Dohmen, MJ; Joop, K; Sturk, A; Bols, PE and Lohuis, JA (2000). Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta. Theriogenology. 54: 1019-1032.
Dombroski, RA; Woodard, DS; Harper, MJK and Gibbs, RS (1990). A rabbit model for bacteria-induced preterm pregnancy loss. Am. J. Obstet. Gynecol., 163: 1938-1943.
Gravett, MG; Witkin, SS; Haluska, GJ and Edwards, JL (1994). An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am. J. Obstet. Gynecol., 171: 1660-1667.
Hao, Y; Wang, C; Zhao, B; Qi, X and Zhao, X (2010). Establishment and dynamic histopathology observation of rats model with endometritis. J. Northwest. A&FUniv., 38: 1-6.
Hasan, HF; Hamzah, AM and Zghair, ZR (2013). Study the comparative effect between Cyperus esculentus seeds extract and gentamicin on induced endometritis in mice. JPCS., 7: 40-47.
Hawk, HW; Brinsfield, TH; Turner, GD; Whitmore, GW and Norcross, MA (1964). Effect of ovarian status on acute inflammatory responses in cattle uteri. Am. J. Vet. Res., 25: 362-366.
Hawk, HW; Turner, GD and Sykes, JF (1960). The effect of ovarian hormones on the uterine defence mechanism during the early stage of induced infection. Am. J. Vet. Res., 21: 644-648.
Hawk, HW; Turner, GD and Sykes, JF (1961). Variation in the inflammatory response and bactericidal activity of the sheep uterus during the estrous cycle. Am. J. Vet. Res., 22: 689-692.
Kita, E; Hiroshi, M and Shuzo, K (1981). A mouse model for the study of gonococcal genital infection. J. Infect. Dis., 143: 67-70.
Lane, MC; Alteri, CJ; Smith, SN and Mobley, HL (2007). Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl. Acad. Sci. U. S. A., 104: 16669-16674.
McLean, AC; Valenzuela, N; Fai, S and Bennett, SA (2012). Performing vaginal lavage, crystal violet staining and vaginal cytological evaluation for mouse estrous cycle staging identification. J. Vis. Exp., 67: e4389-e4389.
Monteavaro, CE; Soto, P; Gimeno, EJ; Echevarría, HM; Catena, M; Portiansky, EL and Barbeito, CG (2008). Histological and lectin binding changes in the genital tract of mice infected with Tritrichomonas foetus. J. Comparative Pathol., 138: 40-45.
Nishikawa, Y and Baba, T (1985). Effects of ovarian hormones on manifestation of purulent endometritis in rat uteruses infected with Escherichia coli. Infect. Immun., 47: 311-317.
Pei, Z and Blaser, MJ (1990). Pathogenesis of Campylobacter
foetus
infections: role of surface array proteins in virulence in a mouse model. J. Clin. Invest., 85: 1036.
Reznikov, LL; Fantuzzi, G; Selzman, CH; Shames, BD; Barton, HA; Bell, H; McGregor, JA and Dinarello, CA (1990). Utilization of endoscopic inoculation in a mouse model of intrauterine infection-induced preterm birth: role of interleukin 1β1. Biol. Reprod., 60: 1231-1238.
Runciman, DJ; Anderson, GA and Malmo, J (2009). Comparison of two methods of detecting purulent vaginal discharge in postpartum dairy cows and effect of intrauterine cephapirin on reproductive performance. Aust. Vet. J., 87: 369-378.
Sheldon, IM; Cronin, J; Goetze, L; Donofrio, G and Schuberth, HJ (2009). Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod., 81: 1025-1032.
Sheldon, IM; Noakes, DE; Rycroft, AN; Pfeiffer, DU and Dobson, H (2002). Influence of uterine bacterial con-tamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction. 123: 837-845.
Sheldon, IM; Rycroft, AN; Dogan, B; Craven, M; Bromfield, JJ; Chandler, A; Roberts, MH; Price, SB; Gilbert, RO and Simpson, KW (2010). Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One. 5: e9192.
Torres, AG; Zhou, X and Kaper, JB (2005). Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect. Immun., 73: 18-29.
Van Andel, A; Franklin, CL; St Claire, MC; Riley, LK; Besch-Williford, CL and Hook, RR (1996). Lesions of experimental genital Tritrichomonas foetus infections in estrogenized BALB/c mice. Vet. Pathol. Online. 33: 407-411.
Williams, EJ; Fischer, DP; Noakes, DE; England, GC; Rycroft, A; Dobson, H and Sheldon, IM (2007). The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology. 68: 549-559.
Wolf, MK (1997). Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin. Microbiol. Rev., 10: 569-584.
Zhao, H; Jian, Z; Yao, G; Ma, S; Huang, Y; Lu, X and Wang, M (2008). A discussion of experimental endo-metritis model in rat. J. Xinjiang. Agri. Univ., 3: 002.