Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages

Document Type : Full paper (Original article)


1 Ph.D. Student in Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

2 Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

3 Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran


Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts’ defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host’s killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defining therapeutic approaches. Brucellosis, caused by the Brucella strains, is a zoonotic bacterial disease that affects thousands of humans
and animals around the world inflicting discomfort and huge economic losses. Similar to many other intracellular dwelling bacteria, infections caused by Brucella are difficult to treat, and hence any attempt at identifying new and common therapeutic targets would prove beneficial for the purpose of curing infections caused by the intracellular bacteria. In THP-1 macrophage infected with Brucella melitensis we studied the expression levels of four host’s genes, i.e. EMP2, ST8SIA4, HCP5 and FRMD5 known to be involved in pathogenesis of Mycobacterium tuberculosis. Our data showed that at this molecular level, except for FRMD5 that was downregulated, the other three genes were upregulated by B. melitensis. Brucella melitensis and M. tuberculosis go through similar intracellular processes and interestingly two of the investigated genes, i.e. EMP2 and ST4SIA8 were upregulated in THP-1 cell infected with B. melitensis similar to that reported for THP-1 cells infected with M. tuberculosis. At the host-pathogen interaction interface, this study depicts overlapping changes for different bacteria with common survival strategies; a fact that implies designing
therapeutic approaches based on common targets may be possible.