ال-کارنیتین در غلظت‌های مشخص عامل افزایش بیان نشانگر سطح سلولی CD34 و آپوپتوز در سلول‌های بنیادی خونساز +CD34 مغز استخوان موش صحرایی

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: درمان مبتنی بر سلول‌های بنیادی به عنوان راهکاری جالب در پزشکی بازساختی مورد ترغیب قرار گرفته است. ماندگاری ضعیف و عدم امکان بقاء طولانی مدت سلول‌های انتقال یافته به بافت آسیب دیده مانع جدی در اثربخشی در پزشکی بازساختی واقع شده است. به همین دلیل، برخی آنتی اکسیدان‌ها همچون ال-کارنیتین به عنوان راهکاری مورد علاقه جهت تقویت بقای سلول مورد استفاده قرار می‌گیرد. هدف: این مطالعه با هدف بررسی تأثیر LC بر بیان نشانگر CD34 و تأثیر آن بر آپوپتوز و نیز بیان ژن SUZ12 انجام گرفته است. روش کار: سلول‌های تک هسته‌ای از مغز استخوان موش صحرایی جدا شده و از بین آن‌ها سلول‌های دارای نشانگر سطح سلولی +CD34 با استفاده از تکنیک MACS جداسازی و کشت داده شدند. سلول‌ها با غلظت‌های 2/0 و 4/0 میلی مولار ال-کارنیتین تحت تیمار قرار گرفتند. سپس میزان بیان ژن و پروتئین سطح سلولی CD34 به ترتیب با روش real-time PCR و فلوسایتومتری اندازه‌گیری شد. درصد آپوپتوز و بیان ژن SUZ12 به ترتیب با روش Annexin V/PI و real-time PCR اندازه‌گیری شد. نتایج: نتایج نشان داد که در گروه تیمار شده با غلظت 2/0 میلی مولار ال-کارنیتین، بیان ژن و پروتئین CD34 به ترتیب به میزان 7/1 و 49/0% افزایش یافته است. در غلظت 4/0 میلی مولار، آپوپتوز اولیه سلول 9/25% افزایش یافته است (P<0.05). همچنین، در غلظت 2/0 و 4/0 میلی مولار LC، بیان ژن SUZ12 در مقایسه با گروه کنترل 10/1 و 75/1 برابر افزایش یافته است P<0.01) و (P<0.05. نتیجه‌گیری: نتایج حاصل از این تحقیق می‌تواند به عنوان راهکار درمانی چند جانبه در روند بهبود لوسمی میلوئید مزمن (CML) استفاده شود.

کلیدواژه‌ها

موضوعات


Adibkia, K; Ehsani, A; Jodaei, A; Fathi, E; Farahzadi, R and Barzegar-Jalali, M (2021). Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension. Beilstein. J. Nanotechnol., 12: 786-797.
Attar, A (2014). Changes in the cell surface markers during normal hematopoiesis: a guide to cell isolation. G. J. Hematol. Blood. Trans., 1: 20-28.
Baylin, SB and Ohm, JE (2006). Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer. 6: 107-116.
Bracken, AP; Pasini, D; Capra, M; Prosperini, E; Colli, E and Helin, K (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO. J., 22: 5323-5335.
Civin, C (1984). A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-Ia cells. J. Immunol., 133: 157-165.
de Fabritiis, P; Dowding, C; Bungey, J; Chase, A; Angus, G; Szydlo, R and Goldman, JM (1993). Phenotypic characterization of normal and CML CD34-positive cells: only the most primitive CML progenitors include Ph-neg cells. Leuk. Lymphoma., 11: 51-61.
Druker, BJ; Guilhot, F; O’Brien, SG; Gathmann, I; Kantarjian, H; Gattermann, N; Deininger, MW; Silver, RT; Goldman, JM; Stone, RM; Cervantes, F and Hochhaus, A (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med., 355: 2408-2417.
Durazzo, A; Lucarini, M; Nazhand, A; Souto, SB; Silva, AM; Severino, P; Souto, EB and Santini, A (2020). The nutraceutical value of carnitine and its use in dietary supplements. Molecules. 25: 2127-2148.
Fan, JP; Kim, HS and Han, GD (2009). Induction of apoptosis by L-carnitine through regulation of two main pathways in Hepa1c1c 7 cells. Amino Acids. 36: 365-372.
Farahzadi, R; Mesbah-Namin, SA; Zarghami, N and Fathi, E (2016). L-carnitine effectively induces hTERT gene expression of human adipose tissue-derived mesenchymal stem cells obtained from the aged subjects. Int. J. Stem. Cells., 9: 107-114.
Fathi, E; Farahzadi, R; Javanmardi, S and Vietor, I (2020a). L-carnitine extends the telomere length of the cardiac differentiated CD117+-expressing stem cells. Tissue Cell. 67: 1-9.
Fathi, E; Farahzadi, R and Valipour, B (2021). Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit+ hematopoietic stem cells. Int. J. Biol. Macromol., 177: 317-327.
Fathi, E; Farahzadi, R; Vietor, I and Javanmardi, S (2020b). Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration. J. Biosci., 45: 1-11.
Fathi, E; Sanaat, Z and Farahzadi, R (2019). Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Res., 54: 165-174.
Fathi, E; Valipour, B and Farahzadi, R (2020c). Targeting the proliferation inhibition of chronic myeloid leukemia cells by bone marrow derived-mesenchymal stem cells via ERK pathway as a therapeutic strategy. Acta Med. Iran., 58: 199-206.
Fathi, E and Vietor, I (2021). Mesenchymal stem cells promote caspase expression in Molt-4 leukemia cells via GSK-3α/and ERK1/2 signaling pathways as a therapeutic strategy. Curr. Gene. Ther., 21: 81-88.
Fouqué, A and Legembre, P (2015). The CD95/CD95L signaling pathway: a role in carcinogenesis. Cancer Immunol., 1846: 143-160.
Gambelli, F; Sasdelli, F; Manini, I; Gambarana, C; Oliveri, G; Miracco, C and Sorrentino, V (2012). Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression. Cell. Biol. Int., 36: 29-38.
Genovese, P; Schiroli, G; Escobar, G; Di Tomaso, T; Firrito, C; Calabria, A; Moi, D; Mazzieri, R; Bonini, C; Holmes, MC; Gregory, PD; Burg, M; Genter, B; Montini, E; Lombardo, A and Naldini, L (2014). Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 510: 235-240.
Ghose, P and Shaham, S (2020). Cell death in animal development. Development. 147: 1-12.
Heidari, HR; Fathi, E; Montazersaheb, S; Mamandi, A; Farahzadi, R; Zalavi, S and Nozad Charoudeh, H (2021). Mesenchymal stem cells cause telomere length reduction of Molt-4 cells via caspase-3, BAD and P53 apoptotic athway. Int. J. Mol. Cell. Med., 10: 113-122.
Kanno, R; Janakiraman, H and Kanno, M (2008). THIS ARTICLE HAS BEEN RETRACTED Epigenetic regulator polycomb group protein complexes control cell fate and cancer. Cancer Sci., 99: 1077-1084.
Kesavardhana, S; Malireddi, RS and Kanneganti, TD (2020). Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol., 38: 567-595.
Kouttab, NM and De Simone, C (1993). Modulation of cytokine production by carnitine. Mediators. Inflamm., 2: 25-28.
Lee, SC; Miller, S; Hyland, C; Kauppi, M; Lebois, M; Di Rago, L; Metcalf, D; Kinkel, SA; Josefsson, EC; Blewitt, ME; Majewski, IJ and Alexander, WS (2015). Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood. 126: 167-175.
Levoin, N; Jean, M and Legembre, P (2020). CD95 structure, aggregation and cell signaling. Front. Cell. Dev. Biol., 8: 1-13.
Lin, HD; Fong, CY; Biswas, A and Bongso, A (2020). Allogeneic human umbilical cord Wharton’s jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem. Cell. Res. Ther., 11: 1-18.
Lu, Y; Chan, YT; Tan, HY; Li, S; Wang, N and Feng, Y (2020). Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol. Cancer. 19: 1-16.
Malaguarnera, M; Risino, C; Gargante, MP; Oreste, G; Barone, G; Tomasello, AV; Costanzo, M and Cannizzaro, MA (2006). Decrease of serum carnitine levels in patients with or without gastrointestinal cancer cachexia. World J. Gastroenterol., 12: 4541-4545.
Metcalf, D (2008). Hematopoietic cytokines. Blood. 111: 485-491.
Mobarak, H; Fathi, E; Farahzadi, R; Zarghami, N and Javanmardi, S (2017). L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells. Vet. Res. Commun., 41: 41-47.
Montazersaheb, S; Avci, ÇB; Bagca, BG; Ay, NPO; Tarhriz, V; Nielsen, PE; Charoudeh, HN and Hejazi, MS (2020). Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates. Int. J. Biol. Macromol., 164: 4583-4590.
Montazersaheb, S; Fathi, E and Farahzadi, R (2021). Cytokines and signaling pathways involved in differentiation potential of hematopoietic stem cells towards natural killer cells. Tissue Cell. 70: 1-8.
Montazersaheb, S; Kazemi, M; Nabat, E; Nielsen, PE and Hejazi, MS (2019). Downregulation of TdT expression through splicing modulation by antisense peptide nucleic acid (PNA). Curr. Pharm. Biotechnol., 20: 168-178.
Mutomba, MC; Yuan, H; Konyavko, M; Adachi, S; Yokoyama, CB; Esser, V; McGarry, JD; Babior, BM and Gottlieb, RA (2000). Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS. Lett., 28: 19-25.
Nielsen, JS and McNagny, KM (2009). CD34 is a key regulator of hematopoietic stem cell trafficking to bone marrow and mast cell progenitor trafficking in the periphery. Microcircirculation. 16: 487-496.
Obeng, E (2021). Apoptosis (programmed cell death) and its signals-A review. Braz. J. Biol., 81: 1133-1143.
Pasini, D; Bracken, AP; Hansen, JB; Capillo, M and Helin, K (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol., 27: 3769-3779.
Penfornis, P; Fernandes, JD and Pochampally, RR (2018). Polycomb group protein Suz12 is regulated by a novel miRNA-like small RNA. Sci. Rep., 8: 1-14.
Pizzatti, L; Binato, R; Cofre, J; Gomes, BE; Dobbin, J; Haussmann, ME; D’Azambuja, D; Bouzas, LF and Abdelhay, E (2010). SUZ12 is a candidate target of the non-canonical WNT pathway in the progression of chronic myeloid leukemia. Genes Chromosomes Cancer. 49: 107-118.
Scherberich, A; Di Di Maggio, N and McNagny, KM (2013). A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World J. Stem. Cells. 5: 1-8.
Thomas, N and Zachariah, SM (2013). Pharmacological activities of chromene derivatives: an overview. Asian J. Pharm. Clin. Res., 6: 11-15.
Tie, R; Li, H; Cai, S; Liang, Z; Shan, W; Wang, B; Tan, Y; Zheng, W and Huang, H (2019). Interleukin-6 signaling regulates hematopoietic stem cell emergence. Exp. Mol. Med., 51: 1-12.
Vardiyan, R; Ezati, D; Anvari, M; Ghasemi, N and Talebi, A (2020). Effect of L-carnitine on the expression of the apoptotic genes Bcl-2 and Bax. Clin. Exp. Reprod. Med., 47: 155-160.
Vescovo, G; Ravara, B; Gobbo, V; Sandri, M; Angelini, A; Della Barbera, M; Dona, M; Peluso, G; Calvani, M; Mosconi, L and Libera, LD (2002). L-Carnitine: a potential treatment for blocking apoptosis and preventing skeletal muscle myopathy in heart failure. Am. J. Physiol. Cell. Physiol., 283: C802-C810.
Walz, C and Sattler, M (2006). Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid
leukemia (CML). Crit. Rev. Oncol. Hematol., 57: 145-164.
Wang, L; Liu, Y; Li, W; Jiang, X; Ji, Y; Wu, X; Xu, L; Qiu, Y; Zhao, K; Wei, T; Li, Y; Zhao, Y and Chen, C (2011). Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano. Lett., 11: 772-780.
Wu, YN; Yang, LX; Shi, XY; Li, IC; Biazik, JM; Ratinac, KR; Chen, DH; Thordarson, P; Shieh, DB and Braet, F (2011). The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials. 32: 4565-4573.
Yang, L; Shi, P; Zhao, G; Xu, J; Peng, W; Zhang, J; Zhang, G; Wang, X; Dong, Z; Chen, F and Cui, H (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 5: 1-35.
Yazdanpanah, M; Luo, X; Lau, R; Greenberg, M; Fisher, LJ and Lehotay, DC (1997). Cytotoxic aldehydes as possible markers for childhood cancer. Free. Radic. Biol. Med., 23: 870-878.
Zoghbi, HY and Beaudet, AL (2016). Epigenetics and human disease. Cold. Spring Harb. Perspect. Biol., 8: 1-28.