Bacteriophage therapy for controlling poultry production problems

Document Type : Review article

Authors

Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt

10.22099/ijvr.2025.51640.7678

Abstract

Today, many poultry production systems require no antibiotics ever. Due to the unavailability of novel antibiotics for veterinary use, presence of multidrug resistant bacteria, and official banning of many antibiotic classes for use in veterinary medicine for production animals, the need for alternative therapeutics such as competitive exclusion compounds, vaccines, nano-medicine, etc. has become an urgent need. In this context, bacteriophages are regarded as an antibiotic alternative. Bacteriophages are viruses that target to infect, replicate, and lyse numerus types of bacteria in humans, animals, water, plants, and food. They are classified into several orders and 15 families. Different preparations of bacteriophages have been approved by the United States of Food and Drug Administration for managing some bacterial infections. They have been globally used in the poultry production and processing. Therefore, the present review intends to expose every aspect of bacteriophages in poultry health and production which include the mechanisms of phages as therapeutics, their usage in the industry, and the limitations/threats associated with the usage of bacteriophages.

Keywords

Main Subjects


Abbas, RZ; Alsayeqh, AF and Aqib AI (2022). Role of bacteriophages for optimized health and production of poultry. Animals (Basel). 12: 3378.
Abd El-Ghany, WA (2020). Salmonellosis: A food borne zoonotic and public health disease in Egypt. J. Infect. Dev. Ctries. 14: 674-678.
Abd El-Ghany, WA (2023). Chitosan: a promising natural polysaccharide feed additive in poultry production systems. Iran. J. Vet. Res., 24: 301-312.
Abd El-Ghany, WA (2024). Potential effects of Garlic (Allium sativum L.) on the performance, immunity, gut health, anti-oxidant status, blood parameters, and intestinal microbiota of poultry: An updated comprehensive review. Animals. 14: 498.
Abd El-Ghany, WA; Awaad, MH and Nagwa, SR (2015). The efficacy of certain feed additives for the prevention of Campylobacter jejuni infection in broiler chickens. Asian J. Anim. Sci., 9: 427-433.
Ackermann, HW (2011). Bacteriophage taxonomy. Microbiol. Aust., 32: 90-94.
Adhikari, P; Cosby, DE; Cox, NA; Lee, JH and Kim, WK (2017). Effect of dietary bacteriophage supplementation on internal organs, fecal excretion, and ileal immune response in laying hens challenged by Salmonella Enteritidis. Poult. Sci., 96: 3264-3271.
Adriaenssens, EM and Rodney Brister, J (2017). How to name and classify your phage: An informal guide. Viruses. 9: 1-9.
Ahmadi, M; Amir Karimi Torshizi, M; Rahimi, S and Dennehy, JJ (2016). Prophylactic bacteriophage administration more effective than post-infection administration in reducing Salmonella enterica serovar Enteritidis shedding in quail. Front. Microbiol., 7: 1253.
Akhtar, M; Viazis, S and Diez-Gonzalez, F (2014). Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control. 38: 67-74.
Andreasen, CB (2013). Staphylococcosis. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), Diseases of poultry. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 971-977.
Andreatti Filho, RL; Higgins, JP; Higgins, SE; Gaona, G; Wolfenden, AD; Tellez, G and Hargis, BM (2007). Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poult. Sci., 86: 1904-1909.
Atterbury, RJ; Connerton, PL; Dodd, CE; Rees, CE and Connerton, IF (2003). Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl. Environ. Microbiol., 69: 4511-4518.
Atterbury, RJ; Dillon, E; Swift, C; Connerton, PL; Frost, JA; Dodd, CER; Rees, CED and Connerton, IF (2005). Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol., 71: 4885-4887.
Atterbury, RJ; Gigante, AM; Lozano, MSR; Medina, RDM; Robinson, G; Alloush, H; Barrow, PA and Allen, VM (2020). Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage. Virol. J., 17: 98.
Atterbury, RJ; Van Bergen, MAP; Ortiz, F; Lovell, A; Harris, JA; De Boer, A; Wagenaar, JA; Allen, VM and Barrow, PA (2007). Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol., 73: 4543-4549.
Azizian, R; Nasab, SDM and Ahmadi, NA (2013). Bacteriophage as a novel antibacterial agent in industry and medicine. J. Paramed. Sci., 4: 4928.
Bao, H; Zhang, H and Wang, R (2011). Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum. Poult. Sci., 90: 2370-2377.
Bardina, C; Spricigo, DA; Cortés, P and Llagostera, M (2012). Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl. Environ. Microbiol., 78: 6600-6607.
Barrow, P; Lovell, M and Berchieri Jr, A (1998). Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol., 5: 294-298.
Berchieri, A; Lovell, MA and Barrow, PA (1991). The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res. Microbiol., 142: 541-549.
Bigot, B; Lee, WJ; McIntyre, L; Wilson, T; Hudson, JA; Billington, C and Heinemann, JA (2011). Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol., 28: 1448-1452.
Biswas, B; Adhya, S; Washart, P; Paul, B; Trostel, AN; Powell, B; Carlton, R and Merril, CR (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun., 70: 204-210.
Borie, C; Sanchez, ML; Navarro, C; Ramírez, S; Morales, MA; Retamales, J and Robeson, J (2009). Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella Enteritidis infection in chickens. Avian Dis., 53: 250-254.
Bren, L (2007). Bacteria-eating virus approved as food additive. FDA Consum., 41: 20-22.
Brüssow, H (2005). Phage therapy: The Escherichia coli experience. Microbiology. 151: 2133-2140.
Bruttin, A and Brüssow, H (2005). Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phage therapy. Antimicrob. Agents Chemother., 49: 2874-2878.
Capparelli, R; Nocerino, N; Iannaccone, M; Ercolini, D; Parlato, M; Chiara, M and Iannelli, D (2010). Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J. Infect. Dis., 201: 52-61.
Carey-smith, GV; Billington, C; Cornelius, AJ; Hudson, JA and Heinemann, JA (2006). Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol. Lett., 258: 182-186.
Carvalho, CM; Gannon, BW; Halfhide, DE; Santos, SB; Hayes, CM; Roe, JM and Azeredo, J (2010). The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol., 10: 232-242.
Casey, E; Sinderen, DV and Mahony, J (2018). In vitro characteristics of phages to guide ‘real life’ phage therapy suitability. Viruses. 10: 163.
Cazares, A; García-Contreras, R and Pérez-Velázquez, J (2020). Eco-evolutionary effects of bacterial cooperation on phage therapy: An unknown risk? Front. Microbiol., 11: 590294.
Chan, BK; Abedon, ST and Loc-carrillo, C (2013). Phage cocktails and the future of phage therapy. Future Microbiol., 8: 769-783.
Chinivasagam, HN; Estella, W; Maddock, L; Mayer, DG; Weyand, C; Connerton, PL and Connerton, IF (2020). Bacteriophages to control Campylobacter in commercially farmed broiler chickens, in Australia. Front. Microbiol., 11: 632.
Choińska-Pulita, A; Mituła, P; Sliwka, P; Łaba, W and Skaradzińska A (2015). Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol., 45: 212-221.
Cisek, AA; Dąbrowska, I; Gregorczyk, KP and Wyżewski, Z (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr. Microbiol., 74: 277-283.
Clavijo, V; Baquero, D; Hernandez, S; Farfan, JC; Arias, J; Arévalo, A; Donado-Godoy, P and Vives-Flores, M (2019). Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult. Sci., 98: 5054-5063.
Clavijo, V and Flórez, MJV (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci., 97: 1006-1021.
Clokie, MRJ and Kropinski, AMB (2009). Molecular and applied aspects. In: Bacteriophages: methods and protocols. 7th Edn., New York, Humana Press.
Clokie, MRJ; Millard, AD; Letarov, AV and Heaphy, S (2011). Phages in nature. Bacteriophage. 1: 31-45.
Colom, J; Cano-Sarabia, M; Otero, J; Cortés, P; Maspoch, D and Llagostera, M (2015). Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella. Appl. Environ. Microbiol., 81: 4841-4849.
Dąbrowska, K and Abedon, ST (2019). Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev., 83: e00012-19.
Danis-Wlodarczyk, K; Dąbrowska, K and Abedon, ST (2021). Phage therapy: the pharmacology of antibacterial viruses. Curr. Issues Mol. Biol., 40: 81-164.
De Jonge, PA; Nobrega, FL; Brouns, SJJ and Dutilh, BE (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol., 27: 51-63.
Doffkay, Z; Dömötör, D; Kovács, T and Rákhely, G (2015). Bacteriophage therapy against plant, animal and human pathogens. Acta Biol. Szeged., 59: 291-302.
Duc, HM; Son, HM; Honjoh, KI and Miyamoto, T (2018). Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT - Food Sci. Technol., 91: 353-360.
Duckworth, DH (1976). Who discovered bacteriophage? Bacteriol. Rev., 40: 793-802.
El-Gohary, FA; Huff, WE; Huff, GR; Rath, NC; Zhou, ZY and Donoghue, AM (2014). Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult. Sci., 93: 2788-2792.
El-Shibiny, A; Scott, A; Timms, A; Metawea, Y; Connerton, P and Connerton, I (2009). Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J. Food Protect., 72: 733-740.
Endersen, L; O’Mahony, J; Hill, C; Ross, RP; McAuliffe, O and Coffey, A (2014). Phage therapy in the food industry. Annu. Rev. Food Sci. Technol., 5: 327-349.
European Food Safety Authority (EFSA) (2009). Panel on Biological Hazards (BIOHAZ): Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed. EFSA J., 7: 1-92.
European Food Safety Authority; European Centre for Disease Prevention and Control (2017). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food. EFSA J., 17: 5598.
Fauconnier, A (2019). Phage therapy regulation: From night to dawn. Viruses. 11: 352.
Fessler, AT; Kadlec, K; Hassel, M; Hauschild, T; Eidam, C; Ehricht, R; Monecke, S and Schwarz, S (2011). Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl. Environ. Microbiol., 77: 7151-7157.
Fernandes, S; Proença, D; Cantante, C; Silva, FA; Leandro, C; Lourenço, S; Milheiriço, C; de Lencastre, H; Cavaco-Silva, P and Pimentel, M (2012). Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb. Drug Resist., 18: 333-343.
Fiorentin, L; Vieira, ND and Barioni, WJr (2005). Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol., 34: 258-263.
Firlieyanti, AS; Connerton, PL and Connerton, IF (2016). Campylobacters and their bacteriophages from chicken liver: The prospect for phage biocontrol. Int. J. Food Microbiol., 237: 121-127.
Fister, S; Mester, P; Witte, AK; Sommer, J; Schoder, D and Rossmanith, P (2019). Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods. Trends Food Sci. Technol., 90: 170-174.
Fukushima, K; West, G; Klein, J; Levine, A and Fiocchi, C (1993). Opposite modulatory activity of IL-10 and IL-4 on lamina propria mononuclear-CELLS (LPMC) is stimulus-dependent. Gastroenterology. 104: A702.
Gadde, U; Kim, WH; Oh, ST and Lillehoj, HS (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev., 18: 26-45.
Gamal, AM; Rohaim, MA; Helal, AM; Hamoud, MM; Zaki, MM; Ismael, E; Laban, SE; Nasr, SA; Moubark, ST; Aly, MM; Elagrab, HM; Ismail, TF and Zahran OK (2018). Evaluation of the viricidal efficacy of commercially used disinfectants against Newcastle disease virus. Biosci. Res., 15: 3283-3292.
Garcia, KCOD; Corrêa, IMO; Pereira, LQ; Silva, TM; Mioni, MSR; Izidoro, ACM; Bastos, IHV; Gonçalves, GAM; Okamoto, AS and Andreatti Filho, RL (2017). Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poult. Sci., 96: 3392-3398.
García, P; Martínez, B; Obeso, JM and Rodríguez, A (2008). Bacteriophages and their application in food safety. Lett. Appl. Microbiol., 47: 479-485.
Gast, RK (2013). Salmonella infections. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), Diseases of poultry. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 677-736.
Gervasi, T; Horn, N; Wegmann, U; Dugo, G; Narbad, A and Mayer, MJ (2014). Expression and delivery of an endolysin to combat Clostridium perfringens. Appl. Microbiol. Biotechnol., 98: 2495-2505.
Gigante, A and Atterbury, RJ (2019). Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol. J., 16: 155.
Gill, JJ (2016). 118 phage applications in animal agriculture and food safety. J. Anim. Sci., 94: 57-58.
Gómez-Gómez, C; Blanco-Picazo, P; Brown-Jaque, M; Quirós, P; Rodríguez-Rubio, L; Cerdà-Cuellar, M and Muniesa, M (2019). Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Sci. Rep., 9: 13281.
Gonçalves, GAM; Donato, TC; Baptista, AAS; de Oliveira Corrěa, IM; Garcia, KCOD and Filho, RLA (2014). Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. Poult. Sci., 93: 216-220.
Goode, D; Allen, VM and Barrow, PA (2003). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol., 69: 5032-5036.
Górski, A; Międzybrodzki, R; Borysowski, J; Dąbrowska, K; Wierzbicki, P; Ohams, M; Korczak-Kowalska, G; Olszowska-Zaremba, N; Łusiak-Szelachowska, M; Kłak, M; Jończyk, E; Kaniuga, E; Gołaś, A; Purchla, S; Weber-Dąbrowska, B; Letkiewicz, S; Fortuna, W; Szufnarowski, K; Pawełczyk, Z; Rogóż, P and Kłosowska, D (2012). Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res., 83: 41-71.
Gouvêa, DM; Mendonça, RCS; Lopez, MES and Batalha, LS (2016). Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT - Food Sci. Technol., 67: 159-166.
Grant, A; Hashem, F and Parveen, S (2016). Salmonella and campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiol., 53: 104-109.
Hargreaves, KR and Clokie, MR (2014). Clostridium difficile phages: Still difficult? Front. Microbiol., 5: 184.
Heo, S; Kim, MG; Kwon, M; Lee, HS and Kim, GB (2018). Inhibition of Clostridium perfringens using bacteriophages and bacteriocin producing strains. Korean J. Food Sci. Anim. Resour., 38: 88-98. Hietala, V; Horsma-Heikkinen, J; Carron, A; Skurnik, M and Kiljunen, S (2019). The removal of endo- and enterotoxins from bacteriophage preparations. Front. Microbiol., 10: 1674.
Higgins, JP; Higgins, SE; Guenther, KL; Huff, W; Donoghue, AM; Donoghue, DJ and Hargis, BM (2005). Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult. Sci., 84: 1141-1145.
Hong, SS; Jeong, J; Lee, J; Kim, S; Min, W and Myung, H (2013). Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J. Microbiol. Biotechnol., 23: 1478-1483.
Housby, JN and Mann, NH (2009). Phage therapy. Drug Discov. Today. 14: 536-540.
Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2002). Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci., 81: 1486-1491.
Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2003). Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection. Poult. Sci., 82: 1108-1112.
Huff, WE; Huff, GR; Rath, NC; Balog, JM and Donoghue, AM (2004). Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult. Sci., 83: 1944-1947.
Huff, WE; Huff, GR; Rath, NC and Donoghue, AM (2010). Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. Poult. Sci., 89: 895-900.
Hungaro, HM; Mendonça, RCS; Gouvêa, DM; Vanetti, MCD and Pinto, CLD (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res. Int., 52: 75-81.
Hussain, MA; Liu, H; Wang, Q; Zhong, F; Guo, Q and Balamurugan, S (2017). Use of encapsulated bacteriophages to enhance farm to fork food safety. Crit. Rev. Food Sci. Nutr., 57: 2801-2810.
Jäckel, C; Hammerl, JA and Hertwig, S (2019). Campylobacter phage isolation and characterization: What we have learned so far. Methods Protoc., 2: 18.
Jeon, G and Ahn, J (2020). Assessment of phagemediated inhibition of Salmonella Typhimurium treated with sub lethal concentrations of ceftriaxone and ciprofloxacin. FEMS Microbiol. Lett., 367: 1-6.
Jeon, G and Ahn, J (2021). Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb. Pathog., 150: 104726.
Jiang, L; Jiang, Y; Liu, W; Zheng, R and Li, C (2022). Characterization of the lytic phage flora with a broad host range against multidrug-resistant Escherichia coli and evaluation of its efficacy against E. coli biofilm formation. Front. Vet. Sci., 9: 906973.
Johnson, RP; Gyles, CL; Huff, WE; Ojha, S; Huff, GR; Rath, NC and Donoghue, AM (2008). Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim. Health Res. Rev., 9: 201-215.
Kim, JW; Cho, YW; Im, HJ; Shin, EM; Seo, HS; Bae, GD; Son, BK and Yang, SY (2016). Bacteriophages: The alternatives to antibiotics for animal feeds. In the 2nd International Symposium on Alternatives to Antibiotics (ATA). Challenges and Solutions in Animal Production; OIE Headquarters, Paris, France 12-15 December 2016.
Kim, SC; Kim, JW; Kim, JU and Kim, IH (2013). Effects of dietary supplementation of bacteriophage on growth performance, nutrient digestibility, blood profiles, carcass characteristics and fecal microflora in broilers. Food Sci. Anim. Resour., 40: 75-81.
Kim, J; Kim, JW; Lee, BB; Lee, GI; Lee, JH; Kim, GB and Kil, DY (2014). Effect of dietary supplementation of bacteriophage on growth performance and cecal bacterial populations in broiler chickens raised in different housing systems. Livest. Sci., 170: 137-141.
Kim, J; Kim, JW; Shin, HS; Kim, MC; Lee, JH; Kim, GB and Kil, DY (2015). Effect of dietary supplementation of bacteriophage on performance, egg quality and caecal bacterial populations in laying hens. Br. Poult. Sci., 56: 132-136.
Knezevic, P; Hoyle, NS; Matsuzaki, S and Gorski, A (2021). Advances in phage therapy: Present challenges and future perspectives. Front. Microbiol., 12: 701898.
Krylov, VN; Tolmachova, TO and Akhverdyan, VZ (1993). DNA homology in species of bacteriophages active on Pseudomonas aeruginosa. Arch. Virol., 131: 141-151.
Labrie, SJ; Samson, JE and Moineau, S (2010). Bacteriophage resistance mechanisms. Nat. Rev. Microbiol., 8: 317-327.
Leskinen, K; Tuomala, H; Wicklund, A; Horsma-Heikkinen, J; Kuusela, P; Skurnik, M and Kiljunen, S (2017). Characterization of vB_SauM-fRuSau02, a twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses. 9: 258.
Lim, TH; Kim, MS; Lee, DH; Lee, YN; Park, JK; Youn, HN; Lee, HJ; Yang, SY; Cho, YW; Lee, JB; Park, SY; Choi, IS and Song, CS (2012). Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res. Vet. Sci., 93: 1173-1178.
Lim, TH; Lee, DH; Lee, YN; Park, JK; Youn, HN; Kim, MS; Lee, HJ; Yang, SY; Cho, YW; Lee, JB; Park, SY; Choi, IS and Song, CS (2011). Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Dis., 55: 435-438.
Lin, DM; Koskella, B and Lin, HC (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 8: 162-173.
Loc-Carrillo, C and Abedon, ST (2011). Pros and cons of phage therapy. Bacteriophage. 1: 111-114.
Loc-Carrillo, C; Atterbury, RJ; Connerton, PL; Wassenaar, TM and Carlton, RM (2005). Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol., 71: 6554-6563.
Lu, Z; Breidt, F; Fleming, HP; Altermann, E and Klaenhammer, TR (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. Int. J. Food Microbiol., 84: 225-235.
Łusiak-Szelachowska, M; Zaczek, M; Weber-Dąbrowska, B; Międzybrodzki, R; Kłak, M; Fortuna, W; Letkiewicz, S; Rogóż, P; Szufnarowski, K; Jończyk-Matysiak, E; Owczarek, B and Górski, A (2014). Phage neutralization by sera of patients receiving phage therapy. Viral Immunol., 27: 295-304.
Ly-chatain, MH (2014). The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol., 5: 51.
Majewska, J; Kźmierczak, Z; Lahutta, K; Lecion, D; Szymczak, A; Miernikiewicz, P; Drapała, J; Harhala, M; Marek-Bukowiec, KJ; Jedruchniewicz, N; Owczarek, B; Górski, A and Dąbrowska, K (2019). Induction of phage-specific antibodies by two therapeutic staphylococcal bacteriophages administered per os. Front. Immunol., 10: 2607.
Marco, MB; Suarez, VB; Quiberoni, A and Pujato, SA (2019). Inactivation of dairy bacteriophages by thermal and chemical treatments. Viruses. 11: 480.
Marek, A; Pyzik, E; Stępień-Pyśniak, D; Urban-Chmiel, R and Nowaczek, A (2019). Characterization of bacteriophages and their carriage in Staphylococcus aureus isolated from broilers in Poland. Br. Poult. Sci., 60: 373-380.
Marotta, F; Garofolo, G; Di Donato, G; Aprea, G; Platone, I; Cianciavicchia, S; Alessiani, A and Di Giannatale, E (2015). Population diversity of Campylobacter jejuni in poultry and its dynamic of contamination in chicken meat. BioMed. Res. Int., 2015: 859845.
Miller, RW; Skinner, EJ; Sulakvelidze, A; Mathis, GF and Hofacre, CL (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis., 54: 33-40.
Monk, AB; Rees, CD; Barrow, P; Hagens, S and Harper, DR (2010). Bacteriophage applications: Where are we now? Lett. Appl. Microbiol., 51: 363-369.
Moore, P; Evenson, A; Luckey, TD; McCoy, E; Elvehjem, C and Hart, EB (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J. Biol. Chem., 165: 437-441.
Moye, ZD; Woolston, J and Sulakvelidze, A (2018). Bacteriophage applications for food production and processing. Viruses. 10: 205.
Mund, MD; Khan, UH; Tahir, U; Mustafa, BE and Fayyaz, A (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop., 20: 1433-1446.
Mutti, M and Corsini, L (2019). Robust approaches for the production of active ingredient and drug product for human phage therapy. Front. Microbiol., 10: 2289.
Nabil, NM; Tawakol, MM and Hassan, HM (2018). Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect. Ecol. Epidemiol., 8: 1539056.
Naghizadeh, M; Amir, M; Torshizi, K; Rahimi, S and Dalgaard, TS (2018). Synergistic effect of phage therapy using a cocktail rather than a single phage in the control of severe colibacillosis in quails. Poult. Sci., 98: 653-663.
Naghizadeh, M; Karimi Torshizi, MA; Rahimi, S; Engberg, RM and Sørensen Dalgaard, T (2019). Effect of serum anti-phage activity on colibacillosis control by repeated phage therapy in broilers. Vet. Microbiol., 234: 61-71.
Nariya, H; Miyata, S; Tamai, E; Sekiya, H; Maki, J and Okabe, A (2011). Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Appl. Microbiol. Biotechnol., 90: 1973-1979.
Nilsson, AS (2014). Phage therapy—Constraints and possibilities. Ups. J. Med. Sci., 119: 192-198.
Nolan, LK; Barnes, HJ; Vaillancourt, JP; Abdul-Aziz, T and Logue, CM (2013). Colibacillosis. In: Swayne, DE; Glisson, JR; McDougald, LR; Nolan, LK; Suarez, DL and Nair, VL (Eds.), Diseases of poultry. (13th Edn.), Ames, IA, USA, Wiley-Blackwell. PP: 751-805.
Noor, M; Runa, N and Husna, A (2020). Evaluation of the effect of dietary supplementation of bacteriophage on production performance and excreta microflora of commercial broiler and layer chickens in Bangladesh. MOJ Proteom. Bioinform., 9: 27-31.
Nowaczek, A; Urban-Chmiel, R; Dec, M; Puchalski, A; Stępień-Pyśniak, D; Marek, A and Pyzik, E (2019). Campylobacter spp. and bacteriophages from broiler chickens: Characterization of antibiotic susceptibility profiles and lytic bacteriophages. MicrobiologyOpen. 8: e00784.
Oliveira, A; Sereno, R and Azeredo, J (2010). In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol., 146: 303-308.
Pan, D and Yu, Z (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 5: 108-119.
Perera, MN; Abuladze, T; Li, M; Woolston, J and Sulakvelidze, A (2015). Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol., 52: 42-48.
Pirnay, JP; Blasdel, BG; Bretaudeau, L; Buckling, A; Chanishvili, N; Clark, JR; Corte-Real, S; Debarbieux, L; Dublanchet, A; De Vos, D; Gabard, J; Garcia, M; Goderdzishvili, M; Górski, A; Hardcastle, J; Huys, I; Kutter, E; Lavigne, R; Merabishvili, M; Olchawa, E; Parikka, KJ; Patey, O; Pouilot, F; Resch, G; Rohde, C; Scheres, J; Skurnik, M; Vaneechoutte, M; Van Parys, L; Verbeken, G; Zizi, M and Van den Eede, G (2015). Quality and safety requirements for sustainable phage therapy products. Pharm. Res., 32: 2173-2179.
Rahaman, MT; Rahman, M; Rahman, MB; Khan, MFR; Hossen, ML; Parvej, MS and Ahmed, S (2014). Poultry Salmonella specific bacteriophage isolation and characterization. Bangladesh J. Vet. Med., 12: 107-114.
Regulski, K; Champion-Arnaud, P and Gabard, J (2021). Bacteriophage manufacturing: From early twentieth-century processes to current GMP. In: Harper, D; Abedon, S; Burrowes, B and McConville, M (Eds.), Bacteriophages: Biology, technology, therapy. Cham, Switzerland, Springer. PP: 699-729.
Richards, PJ; Connerton, PL and Connerton, IF (2019). Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front. Microbiol., 10: 476.
Rubio, LA (2019). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci., 98: 695-706.
Sahin, O; Kassem, II; Shen, Z; Lin, J; Rajashekara, G and Zhang, Q (2015). Campylobacter in poultry: Ecology and potential interventions. Avian Dis., 59: 185-200.
Santos, SB; Fernandes, E; Carvalho, CM; Sillankorva, S; Krylov, VN; Pleteneva, EA; Shaburova, OV; Nicolau, A; Ferreira, EC and Azeredo, J (2010). Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl. Environ. Microbiol., 76: 7338-7342.
Sarrami, Z; Sedghi, M; Mohammadi, I; Kim, WK and Mahdavi, AH (2022). Effects of bacteriophage supplement on the growth performance, microbial population, and PGC-1α and TLR4 gene expressions of broiler chickens. Sci. Rep., 12: 14391.
Schreiber, S; Heinig, T; Thiele, H and Raedler, A (1995). Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology. 108: 1434-1444.
Seal, BS (2013). Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult. Sci., 92: 526-533.
Sellaoui, S; Alloui, N; Mehenaoui, S and Djaaba, S (2012). Evaluation of immune status of the chicken using morphometry and histology of the bursa of fabricius. J. Vet. Adv., 2: 440-443.
Sillankorva, SM; Oliveira, H and Azeredo, J (2012). Bacteriophages and their role in food safety. Int. J. Microbiol., 2012: 863945.
Sklar, IB and Joerger, RD (2001). Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Saf., 21: 15-29.
Smith, HW (1959). The bacteriophages of Clostridium perfringens. J. Gen. Microbiol., 21: 622-630.
Sommer, J; Trautner, C; Witte, AK; Fister, S; Schoder, D; Rossmanith, P and Mester, PJ (2019). Don’t shut the stable door after the phage has bolted-the importance of bacteriophage inactivation in food environments. Viruses. 11: 468.
Stern, A and Sorek, R (2011). The phage-host arms race: shaping the evolution of microbes. Bioessays. 33: 43-51.
Sukumaran, AT; Nannapaneni, R; Kiess, A and Sharma, CS (2015). Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int. J. Food Microbiol., 207: 8-15.
Tagliaferri, TL; Jansen, M and Horz, HP (2019). Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front. Cell. Infect. Microbiol., 9: 22.
Tawakol, MM; Nabil, NM and Samy, A (2019). Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with Escherichia coli and infectious bronchitis in chickens. Infect. Ecol. Epidemiol., 9: 1686822.
Thanki, AM; Brown, N; Millard, AD and Clokie, MRJ (2019). Genomic characterization of jumbo Salmonella phages that effectively target United Kingdom Salmonella serotypes. Front. Microbiol., 10: 1491.
Toro, H; Price, SB; Mckee, AS; Hoerr, FJ; Krehling, J; Perdue, M and Bauermeister, L (2005). Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis., 49: 118-124.
Torres-Acosta, MA; Castaneda-Aponte, HM; Mora-Galvez, LM; Gil-Garzon, MR; Banda-Magaña, MP; Marcellin, E; MayoloDeloisa, K and Licona-Cassani, C (2021). Comparative economic analysis between endogenous and recombinant production of hyaluronic acid. Front. Bioeng. Biotechnol., 9: 680278.
Torres-Barceló, C and Hochberg, ME (2016). Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol., 24: 249-256.
Twort, FW (1915). An investigation on the nature of ultra-microscopic viruses. Lancet. 186: 1241-1243.
van der Wielen, PW; Biesterveld, S; Notermans, S; Hofstra, H; Urlings, BA and van Knapen, F (2000). Role of volatile fatty acids in development of the cecal microfora in broiler chickens during growth. Appl. Environ. Microbiol., 66: 2536-2540.
Van Immerseel, F; De Buck, J; Pasmans, F; Huyghebaert, G; Haesebrouck, F and Ducatelle, R (2004). Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol., 33: 537-549.
Vikram, A; Woolston, J and Sulakvelidze, A (2021). Phage biocontrol applications in food production and processing. Curr. Issues Mol. Biol., 40: 267-302.
Wagenaar, JA; Van Bergen, MAP; Mueller, MA; Wassenaar, TM and Carlton, RM (2005). Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol., 109: 275-283.
Wang, L; Tan, Y; Liao, Y; Li, L; Han, K; Bai, H; Cao, Y; Li, J; Gong, Y; Wang, X and Peng, H (2022). Isolation, characterization and whole genome analysis of an avian pathogenic Escherichia coli phage vB_EcoS_GN06. Vet. Sci., 9: 675.
Wang, J; Yan, L; Lee, JH and Kim, IH (2013). Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. Asian-Australs. J. Anim. Sci., 26: 573-578.
Wernicki, A; Nowaczek, A and Urban-chmiel, R (2017). Bacteriophage therapy to combat bacterial infections in poultry. Virol. J., 14: 1-13.
Wójcik, EA; Wojtasik, A; Górecka, E; Stańczyk, M and Dastych, J (2015). Application of bacteriophage preparation BAFASAL® in broiler chickens experimentally exposed to Salmonella spp. SSRCI Vet. Med. Prod. Feed Add., 16: 241-251.
Woźnica, WM; Bigos, J and Łobocka, MB (2015). Lysis of bacterial cells in the process of bacteriophage release-canonical and newly discovered mechanisms. Adv. Hyg. Experm. Med., 69: 114-126.
Wright, A; Hawkins, CH; Anggård, EE and Harper, DR (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 34: 349-357.
Wysok, B; Pastuszczak-Frak, M; Uradziński, J; Gomółka-Pawlicka, M; Dzisko, J; Dziedziech, M and Marko, A (2015). Occurrence and antibiotic resistance of Campylobacter spp. strains isolated from pigs and humans. Med. Med., 71: 801-806.
Xie, H; Zhuang, X; Kong, J; Ma, G and Zhang, H (2005). Bacteriophage Esc-A is an efficient therapy for Escherichia coli 3-1 caused diarrhea in chickens. J. Gen. Appl. Microbiol., 51: 159-163.
Xu, Y; Yu, X; Gu, Y; Huang, X; Liu, G and Liu, X (2018). Characterization and genomic study of phage vB_EcoS-B2 infecting multidrug-resistant Escherichia coli. Front. Microbiol., 9: 793.
Yadav, S and Jha, R (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol., 10: 1-11.
Yan, T; Liang, L; Yin, P; Zhou, Y; Sharoba, AM; Lu, Q; Dong, X; Liu, K; Connerton, IF and Li, J (2020). Application of a novel phage LPSEYT for biological control of Salmonella in foods. Microorganisms. 8: 400.
Young, KT; Davis, LM and DiRita, VJ (2007). Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Microbiol., 5: 665-679.
Zaczek, M; Łusiak-Szelachowska, M; Jończyk-Matysiak, E; Weber-Dąbrowska, B; Międzybrodzki, R; Owczarek,
B; Kopciuch, A; Fortuna, W; Rogóż, P and Górski, A
(2016). Antibody production in response to Staphylococcal ms-1 phage cocktail in patients undergoing phage therapy. Front. Microbiol., 7: 1681.
Żbikowska, K; Michalczuk, M and Dolka, B (2020). The use of bacteriophages in the poultry industry. Animals (Basel). 10: 872.
Zhao, P; Baek, H and Kim, I (2012). Effects of bacteriophage supplementation on egg performance, egg quality, excreta microfora, and moisture content in laying hens. Asian-Australas. J. Anim. Sci., 25: 1015-1020.
Zimmer, M; Scherer, S and Loessner, MJ (2002b). Genomic analysis of Clostridium perfringens bacteriophagephi3626, which integrates into guaA and possibly affects sporulation. J. Bacteriol., 184: 4359-4368.
Zimmer, M; Vukov, N; Scherer, S and Loessner, MJ (2002a). The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl. Environ. Microbiol., 68: 5311-5317.