

Shiraz University

IJVR

ISSN: 1728-1997 (Print)
ISSN: 2252-0589 (Online)

Vol. 26

No. 3

Ser. No. 92

2025

**IRANIAN
JOURNAL
OF
VETERINARY
RESEARCH**

Original Article

Occurrence of *Salmonella*, *Listeria monocytogenes*, and *Escherichia coli* O157:H7 in goat and sheep milk from four rural and tribal regions, Fars province, Iran

Sayyadi, M.¹; Rahmdeh, S.²; Pashangeh, S.³; Hosseinzadeh, S.^{4***}; Fani, F.⁵;
Zare, M.⁶ and Shekarforoush, S. S.^{4*}

¹DVM Student, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran;
²Ph.D. Student in Food Hygiene, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; ³Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran; ⁴Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; ⁵Department of Microbiology, Infectiology and Immunology, Laval University, Quebec, Canada; ⁶MSc in Microbiology, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

***Correspondence:** S. S. Shekarforoush, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran. E-mail: shekar@shirazu.ac.ir

****Co-correspondence:** S. Hosseinzadeh, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran. E-mail: hosseinzadeh@shirazu.ac.ir

 10.22099/ijvr.2025.50038.7379

(Received 26 Apr 2024; revised version 5 May 2025; accepted 11 May 2025)

This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

Abstract

Background: Raw sheep and goat milk may harbor major foodborne pathogens of public health concern, including *Salmonella*, *Listeria monocytogenes*, and *E. coli* O157:H7. The rising issue of antimicrobial resistance further underscores the need for monitoring these contaminants. **Aims:** This research paper describes a survey of the frequency and antimicrobial susceptibility of *Salmonella*, *Listeria monocytogenes*, and *Escherichia coli* O157:H7 in milk samples from goat and sheep herds, located in Fars province, Iran. **Methods:** A total number of 110 milk samples from 50 goat and sheep herds located in tribal and rural regions were investigated for pathogenic organisms. The antimicrobial susceptibility of the isolates was determined according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. **Results:** None of the samples showed the presence of *Salmonella*. Four samples (3.6%) from three rural herds contained *L. monocytogenes*, all positive for the species-specific virulence gene *hlyA*. *E. coli* O157:H7 was detected in five milk samples (4.5%) belonging to four rural herds. The four virulence genes (*stx1*, *stx2*, *eae*, and *ehlyA*), and two serotyping genes (*rfbE*, and *fliC*) were found in all *E. coli* O157:H7 isolates. The somatic cell count of contaminated samples was lower than the US legal limit of 1.0×10^6 cells/ml; milk contamination was not, therefore, related to the mastitis. All *L. monocytogenes* isolates were resistant to penicillin, ampicillin, and trimethoprim-sulfamethoxazole. The *E. coli* O157:H7 isolates exhibited full or intermediate resistance to ampicillin, cefixime, and chloramphenicol, but they were susceptible to gentamicin, kanamycin, streptomycin, tetracycline, ciprofloxacin, trimethoprim-sulfamethoxazole, and trimethoprim. **Conclusion:** Despite the low occurrence, the presence of foodborne pathogens in raw milk reinforces the need to control the sale and consumption of raw milk dairy products in rural and tribal regions where goat and sheep farming is of great economic importance.

Key words: Antibiotic resistance, *Escherichia coli* O157:H7, Goat milk, *Listeria monocytogenes*, *Salmonella*

Introduction

The microbiological quality of raw materials used in food preparation can affect the safety of the end product. In the case of dairy foods prepared from raw milk, consumer safety concerns arise from possible contamination with human pathogens. *Salmonella*, *Listeria monocytogenes*, and *Escherichia coli* O157:H7

are among the most important raw milk-related pathogens, as they have been implicated in worldwide outbreaks associated with raw milk and its derivatives (Jamali *et al.*, 2013; Gonzales-Barron *et al.*, 2017). In the United States, the annual burden of diseases caused by these foodborne pathogens has been estimated to be 76 million acute illnesses, 325,000 hospitalizations, and 5000 deaths (Pires *et al.*, 2010). Salmonellosis and

listeriosis are also responsible for the high rate of mortality due to foodborne illnesses in Europe (Fagundes *et al.*, 2011). A matter of greater concern is the antimicrobial resistance of the pathogens, making treatment more difficult. In Iran, the wide use of antibiotics in human and veterinary medicine has led to a rise of antibiotic resistance in pathogens (Rahimi *et al.*, 2010; Jamali *et al.*, 2013; Lotfollahi *et al.*, 2017).

Although bovine milk is the most produced and used milk in Iran, goat, and sheep farming is still of great economic importance in the rural and tribal regions. A majority of the milk from these farms is converted to dairy products, either consumed by the producers themselves or sold. The production and consumption of raw milk and dairy foods in these regions, which is in turn accompanied by human health risks. The presence of foodborne pathogens in goat and sheep milk from Iranian herds has been previously addressed in a few studies (Rahimi *et al.*, 2010; Farzan *et al.*, 2012; Momtaz *et al.*, 2012; Rahimi *et al.*, 2012; Jamali *et al.*, 2013; Shaigan Nia *et al.*, 2014; Lotfollahi *et al.*, 2017; Ranjbar *et al.*, 2018). No similar work has been, however, performed on the herds from Fars province with a considerable population of nomads and peasants.

Therefore, the present preliminary study, aimed to investigate the frequency and antimicrobial susceptibility of *Salmonella*, *L. monocytogenes*, and *E. coli* O157:H7 in milk samples from goat and sheep herds located in Fars Province, Iran.

Materials and Methods

Sample collection

According to the Nomadic Affairs Organization of the Ministry of Agricultural Jihad, the main areas where nomadic livestock are settled in Fars Province include 12 main areas (clusters). Four clusters were randomly selected. Three nomadic areas included Firuzabad (A), Marvdash (B) and Jahrom (C), and one rural area (Bidzard - D). In each area, the settlement of nomadic herds was determined and about 10% of them were randomly selected. Details of the regions of sampling and the number of herds (including sheep and goats) are given in Table 1. One hundred and ten samples of raw milk from 70 individual goats and 40 individual sheep were collected from 50 randomly selected herds with 40 to 323 animals. Out of 50 herds, 47 herds contained sheep and goats, one herd included sheep and two herds just included goats. From each herd, depending on the

number and type of animals, one to three milking animals were arbitrarily selected. Milk samples were directly taken under sterilized conditions. In the study areas, the feeding system was a combination of indoor feeding and part-time grazing. The only milking procedure was traditional hand milking. While tribal grazing lands were far from human activities, the rural pastures were contaminated with sewage and human waste.

Following teat disinfection and discarding the first milk streams, a milk sample of about 50 ml from each udder half was collected in a sterile plastic vial. The samples were then transported on ice to the microbiology laboratory and analyzed immediately.

Microbiological analyses

Somatic cell count (SCC) of milk samples

A portion of the milk sample intended for SCC testing was preserved in 0.5% potassium dichromate and tested within 24 h of sampling. Before testing, the samples were heated to 40°C in a water bath and held at this temperature for 15 min. SCC was measured using an automated cell counter (Fossomatic; Foss Electric, Hillerod, Denmark).

Isolation of pathogenic bacteria

The milk samples were first homogenized by vortexing and then divided into 10-ml portions and screened for *Salmonella*, *L. monocytogenes*, and *E. coli* O157:H7. The analyses were conducted on the sediments from centrifugation of 10-ml milk samples (10,000 × g for 15 min at 4°C).

The modified Bacteriological Analytical Manual method was used for *Salmonella* isolation (Andrews *et al.*, 2007). In brief, the sample sediment was suspended in 10 ml of lactose broth (Merck, Darmstadt, Germany). Following 24 h of incubation at 35°C, 0.1 and 1 ml of the culture were transferred to Rappaport-Vassiliadis (Merck) and tetrathionate (Merck) broths and incubated for 24 h at 42 and 35°C, respectively. Both broths were subsequently streaked onto the xylose-lysine-desoxycholate agar (Merck), *Salmonella*-Shigella agar (Merck), and bismuth sulfite agar (Merck). After incubation at 35°C for 24-48 h, the suspected colonies were purified and subjected to biochemical identification tests, including Triple Sugar Iron (TSI) agar, Indole, Methyl Red, Voges-Proskauer, and Citrate (IMViC), lysine decarboxylase, and urease tests.

Table 1: Details of the regions of sampling and somatic cell count (SCC) of milk samples

Region	Number of herds	Sample			SCC (cells/ml)					
					Median			Mean ± SD		
		Sheep	Goat		Sheep	Goat	Total	Sheep	Goat	Total
A	20	22	24		611	1237	1115	$2.1 \times 10^3 \pm 4.3 \times 10^3$	$3.0 \times 10^3 \pm 3.6 \times 10^3$	$2.6 \times 10^3 \pm 3.9 \times 10^3$
B	10	9	11		178	1644	420	$9.6 \times 10^2 \pm 1.8 \times 10^3$	$3.6 \times 10^3 \pm 5.6 \times 10^3$	$2.4 \times 10^3 \pm 4.4 \times 10^3$
C	11	5	16		122	383	163	$1.9 \times 10^3 \pm 3.9 \times 10^3$	$5.3 \times 10^2 \pm 8.0 \times 10^2$	$8.6 \times 10^2 \pm 2.0 \times 10^3$
D	9	4	19		151	491	446	$2.5 \times 10^3 \pm 4.1 \times 10^3$	$2.1 \times 10^3 \pm 3.4 \times 10^3$	$2.2 \times 10^3 \pm 3.4 \times 10^3$
Total	50	40	70		271	700	511.5	$1.8 \times 10^3 \pm 3.6 \times 10^3$	$2.3 \times 10^3 \pm 3.6 \times 10^3$	$2.1 \times 10^3 \pm 3.6 \times 10^3$

Excel 2016 software was used for descriptive statistical analysis

To detect *L. monocytogenes*, the sediment was enriched in 10 ml of buffered *Listeria* enrichment broth (Merck). At the 4th h of incubation at 30°C, the selective agents including acriflavin (10 mg/L), sodium nalidixate (40 mg/L), and natamycin (25 mg/L) were added to the enrichment broth, and the incubation was continued for an additional 44 h. The enrichment broth was subcultured at 24 and 48 h onto the modified PALCAM agar (Merck) consisting of basal medium supplemented with 5 mg/L acriflavin and 40 mg/L sodium nalidixate. Presumptive isolates were then identified by Gram-staining, motility, methyl red, and Voges-Proskauer tests (Hitchins and Jinneman, 2013).

E. coli O157:H7 was identified as described by Chye *et al.* (2004). The enrichment procedure was performed by transferring the sediment to 10 ml of tryptic soy broth (Merck) containing 1.5 g/L bile salts No. 3 (Oxoid Ltd., Basingstoke, UK) and 20 mg/L novobiocin (Sigma-Aldrich, St Louis, MO, USA). After overnight incubation at 35°C, the culture was plated onto sorbitol MacConkey agar (Merck) supplemented with cefixime (0.05 mg/L) and potassium tellurite (2.5 mg/L). The colorless colonies were purified on eosin-methylene blue agar (Merck); colonies with a metallic green sheen were further characterized by the following biochemical tests: IMViC and TSI tests. Serotyping of O- and H-antigens was carried out using standard methods at Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences.

All stock cultures were maintained in brain-heart infusion (Merck) broth containing 30% (v/v) glycerol at -80°C. When required, the isolates were inoculated into brain-heart infusion (BHI) broth and grown at 37°C for 24-48 h.

Polymerase chain reaction (PCR) confirmation of the isolates

All the primer pairs used to amplify the virulence genes are listed in Table 2. The *L. monocytogenes* isolates were tested for the presence of the *hlyA* gene

encoding α -haemolysin (Furrer *et al.*, 1991; Hosseinzadeh *et al.*, 2012). The PCR mixture was prepared in a final volume of 25 μ L with 1 \times PCR buffer, 1.5 mM MgCl₂, 0.4 μ M of each primer, 100 μ M dNTP, 5 U of Taq deoxyribonucleic acid (DNA) polymerase, and 2 μ L DNA template. The thermal profile consisted of initial denaturing at 95°C for 5 min, followed by 40 cycles of 30 s at 95°C, 60 s at 56°C, and 60 s at 72°C and a final extension step of 72°C for 5 min.

The *E. coli* O157:H7 isolates were subjected to PCR detection of four virulence genes (*stx1*, *stx2*, *eae*, and *ehlyA*), and two serotype genes (*rfbE*, and *fliC*) (Bai *et al.*, 2010). A duplex PCR was used to simultaneously amplify the genes *stx1* and *stx2*; amplification was conducted in a reaction volume of 25 μ L containing 1 \times PCR buffer, 0.75 mM MgCl₂, 0.2 μ M of each primer, 62.5 μ M dNTP, 2.5 U of Taq DNA polymerase, and 2 μ L DNA template. The PCR thermal program was 95°C for 3 min, 35 cycles of 94°C for 45 s, 58°C for 90 s, and 72°C for 90 s, and 72°C for 7 min. For *ehlyA* detection, 2 μ L of DNA template was added to a mixture of 10 μ L of Taq DNA Polymerase 2.0 \times Master Mix RED (1.5 mM MgCl₂; Ampliqon, Copenhagen, Denmark) and 0.4 μ M of each primer. The gene was amplified under the following thermal conditions: 95°C for 3 min; 35 cycles of 95°C for 20 s, 58°C for 40 s, and 72°C for 90 s; 72°C for 5 min. The genes *eae*, *rfbE*, and *fliC* were co-amplified according to Bai *et al.* (2010).

L. monocytogenes American Type Culture Collection (ATCC) 1297 and *E. coli* O157:H7 ATCC 43895 were used as positive control strains.

Antimicrobial susceptibility tests

The minimal inhibitory concentrations (MIC) of penicillin (0.5-16 μ g/ml), ampicillin (0.5-16 μ g/ml), and trimethoprim/sulfamethoxazole (0.5/9.5-16/304 μ g/ml) against *L. monocytogenes* isolates were measured using the broth microdilution method and interpreted according to Clinical and Laboratory Standards Institute (CLSI) guidelines M45-P breakpoints (CLSI, 2005).

Table 2: The primers used for PCR confirmation of *L. monocytogenes* and *E. coli* O157:H7

Target gene	Primer sequence (5'→3')	PCR product (bp)	Reference
<i>hlyA</i>	CGGAGGTTCCGCAAAAGATG CCTCCAGAGTGATCGATGTT	234	Furrer <i>et al.</i> (1991)
<i>stx1</i>	ATAAATCGCCATTCTGTTGACTAC AGAACGCCCACTGAGATCATC	180	Lefebvre <i>et al.</i> (2009)
<i>stx2</i>	GGCACTGTCTGAAACTGCTCC TCGCCAGTTATCTGACATTCTG	255	Lefebvre <i>et al.</i> (2009)
<i>eae</i>	CATTATGGAACGGCAGAGGT ACGGATATCGAACGCCATTG	375	Bai <i>et al.</i> (2010)
<i>ehlyA</i>	ACGATGTGGTTATTCTGGA CTTCACGTGACCATACATAT	165	Dipineto <i>et al.</i> (2006)
<i>rfbE</i>	CAGGTGAAGGTGGAATGGTTGTC TTAGAATTGAGACCATCCAATAAG	296	Bai <i>et al.</i> (2010)
<i>fliC</i>	AGCTGCAACGGTAAGTGATTT GGCAGCAAGCGGGTTGGTC	949	Bai <i>et al.</i> (2010)

Table 3: Frequency of *Salmonella*, *L. monocytogenes*, and *E. coli* O157:H7 in 50 herds and 110 goat and sheep milk samples

Pathogens	No. (%) of positive herd					No. (%) of positive samples		
	Region A (N=20)	Region B (N=10)	Region C (N=11)	Region D (N=9)	Total (N=50)	Goat milk (N=70)	Sheep milk (N=40)	Total (N=110)
<i>Salmonella</i>	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
<i>L. monocytogenes</i>	0 (0%)	0 (0%)	0 (0%)	3 (33.3%)	3 (6.0%)	4 (5.7%)	0 (0%)	4 (3.6%)
<i>E. coli</i> O157:H7	0 (0%)	0 (0%)	0 (0%)	4 (44.4%)	4 (8.0%)	4 (5.7%)	1 (2.5%)	5 (4.5%)

Table 4: The origin of foodborne pathogens isolated from goat and sheep milk

Pathogens	Isolate code	Region	Herd	Origin	Somatic cells of milk (cells/ml)
<i>L. monocytogenes</i>	R4S88	D	42	Goat	7.2×10^4
	R4S90	D	43	Goat	3.6×10^5
	R4S91	D	43	Goat	2.0×10^5
	R4S110	D	50	Goat	1.4×10^5
<i>E. coli</i> O157:H7	R4S93	D	44	Goat	9.5×10^4
	R4S94	D	45	Goat	5.4×10^5
	R4S96	D	46	Sheep	1.5×10^5
	R4S109	D	50	Goat	1.5×10^5
	R4S110	D	50	Goat	1.4×10^5

The susceptibility of *E. coli* O157:H7 isolates to ampicillin (10 µg), cefixime (5 µg), gentamicin (10 µg), kanamycin (30 µg), streptomycin (10 µg), tetracycline (30 µg), ciprofloxacin (5 µg), trimethoprim-sulfamethoxazole (1.25/23.75 µg), trimethoprim (5 µg), and chloramphenicol (30 µg) was determined by the disk diffusion method proposed by Clinical and Laboratory Standards Institute (CLSI, 2015).

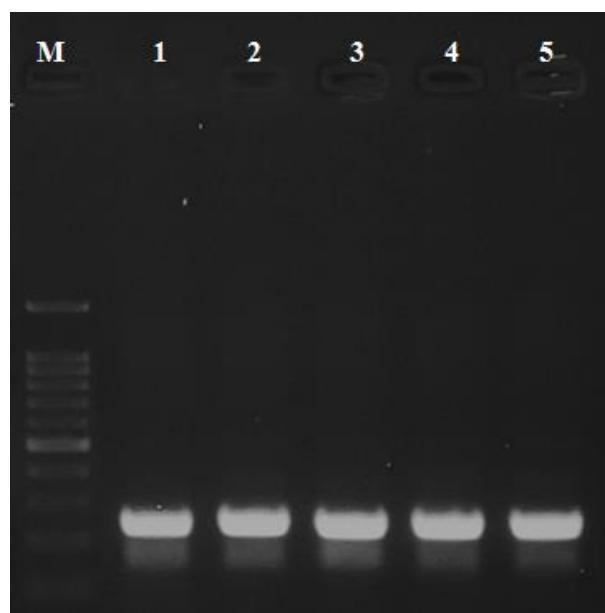
Results

Isolation of pathogenic bacteria and detection of virulence genes

The frequency of foodborne pathogens in 50 herds from 4 regions of Fars province, Iran, and 110 milk samples is shown in Table 3. *Salmonella* was absent from all the samples analyzed. The frequency of *L. monocytogenes* and *E. coli* O157:H7 in the herd was 6.0% and 8.0%, respectively. As shown in Tables 3 and 4, all contaminated samples belonged to the rural region (D), while no pathogen was isolated from milk samples from tribal areas (regions A, B, and C).

All *L. monocytogenes* isolates retrieved by culturing methods were positive for the species-specific virulence gene *hlyA* (Fig. 1). All five isolates of *E. coli* O157:H7 harbored the virulence genes (*stx1*, *stx2*, *eae*, *ehlyA*) (Fig. 2), and the serotype genes (*rfbE*, and *fltC*).

Antimicrobial susceptibility


The antimicrobial resistance of *L. monocytogenes* and *E. coli* O157:H7 isolates are summarized in Tables 5 and 6, respectively. All *L. monocytogenes* isolates were resistant to the beta-lactam antibiotics (penicillin and ampicillin) tested and exhibited resistance to trimethoprim-sulfamethoxazole.

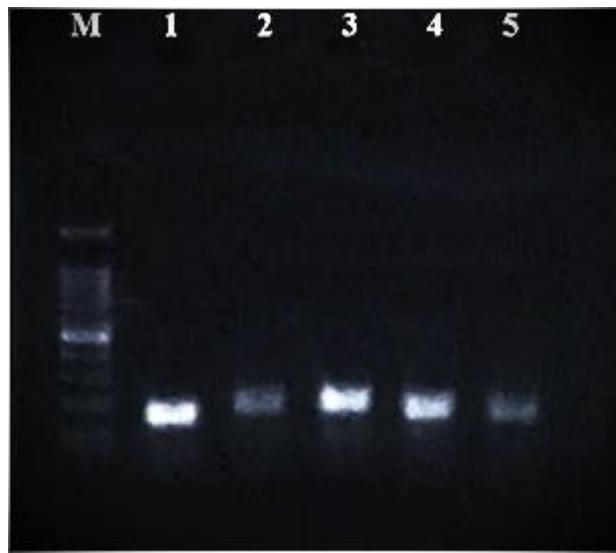
All five *E. coli* O157:H7 isolates were resistant to ampicillin. They also showed intermediate resistance to

cefixime and chloramphenicol. The isolates were, however, susceptible to the other antimicrobials tested.

SCC of milk samples

The SCC of the samples was in the range of 1.3×10^2 and 1.8×10^7 cells/ml, with the median value of 5.1×10^5 cells/ml (Table 1). The SCC levels of 37% of the samples were above the US legal limit of 1.0×10^6 cells/ml (Paape *et al.*, 2007). The SCC of contaminated samples was lower than the US legal limit of 1.0×10^6 cells/ml (Table 4).

Fig. 1: PCR amplification of a 234 Base pair (bp) fragment of the gene *hlyA* in *Listeria monocytogenes* isolates. Lane M: 100-bp DNA ladder, Lane 1: Positive control (*L. monocytogenes* ATCC 1297), and Lanes 2-5: *L. monocytogenes* R4S88, R4S90, R4S91, and R4S110, respectively


Table 5: Minimal inhibitory concentration (µg/ml) of penicillin G, ampicillin and trimethoprim/sulfamethoxazole for *L. monocytogenes* isolates from goat and sheep milk

Isolate code	Antimicrobial agents		
	Penicillin (range: 0.5-16 µg/ml)	Ampicillin (range: 0.5-16 µg/ml)	Trimethoprim/Sulfamethoxazole (range: 0.5/9.5-16/304 µg/ml)
R4S88	8	4	8/152
R4S90	8	8	8/152
R4S91	8	8	8/152
R4S110	8	4	4/76

Table 6: Antimicrobial susceptibility profiles of *Escherichia coli* O157:H7 isolates from goat and sheep milk

Isolate code	Antimicrobial agents ^a									
	Amp	Cef	Gen	Kan	Strep	Tet	Cip	Tmp/Smx	Tmp	Clo
R4S93	R	I	S	S	S	S	S	S	S	I
R4S94	R	I	S	S	S	S	S	S	S	I
R4S96	R	I	S	S	S	S	S	S	S	I
R4S109	R	I	S	S	S	S	S	S	S	I
R4S110	R	I	S	S	S	S	S	S	S	I

^aAntimicrobials used: Amp: Ampicillin, Cef: Cefixime, Gen: Gentamicin, Kan: Kanamycin, Strep: Streptomycin, Tet: Tetracycline, Cip: Ciprofloxacin, Tmp/Smx: Trimethoprim/sulfamethoxazole, Tmp: Trimethoprim, and Clo: Chloramphenicol. S: Sensitive, I: Intermediate, and R: Resistant (CLSI, 2015)

Fig. 2: PCR amplification of a 165 bp fragment of the gene *ehyA* in *Escherichia coli* O157:H7 isolates. Lane: M: 100-bp DNA ladder, Lane 1: Positive control (*E. coli* O157:H7 ATCC 43895), and Lanes 2-5: *E. coli* O157:H7 R4S93, R4S94, R4S96, and R4S110, respectively

Discussion

In this study, the frequency of *L. monocytogenes* and *E. coli* O157:H7 contamination in milk from some rural and nomadic sheep and goat herds in Fars province, Iran, was 6.0 and 8.0%, respectively. *Salmonella* contamination was not observed in any of the studied herds. The rate of raw milk contamination with *Salmonella* varied depending on the geographic region, herd size, farming practices, farm environmental contamination, and fecal excretion (Hill *et al.*, 2012). Scarce information is available on goat and sheep milk contamination with *Salmonella* in Iran (Shaigan Nia *et*

al., 2014). The present study was a comprehensive survey of contamination with *Salmonella* in the sheep and goat herds of rural and tribal areas in Fars province, Iran. In this study, *Salmonella* was not detected in any sample, which is consistent with reports from other countries (Foschino *et al.*, 2002; Morgan *et al.*, 2003; Mühlherr *et al.*, 2003; Ekici *et al.*, 2004; Cortés *et al.*, 2006; Bogdanovičová *et al.*, 2015; Cavicchioli *et al.*, 2015; Bogdanovičová *et al.*, 2016). Although unable to compete with the indigenous microbiota of raw milk, *Salmonella* can persist in the hostile environment of milk. Failure to isolate this pathogen may be due to the interference effect of autochthonous microbiota (Nero *et al.*, 2008). The possibility of transmission to consumers through raw milk dairy foods should, therefore, not be ignored, as such products have been implicated in several outbreaks worldwide (Desenclos *et al.*, 1996; Mazurek *et al.*, 2004; Dominguez *et al.*, 2009; Mungai *et al.*, 2015). Four goat milk samples collected from three rural herds contained *L. monocytogenes* (Table 3). The frequency was comparable to that of other parts of the country (Rahimi *et al.*, 2010; Jamali *et al.*, 2013; Lotfollahi *et al.*, 2017) or the world (Barbuddhe *et al.*, 2000; Osman *et al.*, 2014; Bogdanovičová *et al.*, 2015; Bogdanovičová *et al.*, 2016). However, a much higher contamination rate (11.5%) has been reported in sheep milk samples from Karak district, Jordan (AL-Tahiri *et al.*, 2008). On the other hand, in some studies, the organism was found to be absent from goat and sheep milk (Foschino *et al.*, 2002; Morgan *et al.*, 2003; Atil *et al.*, 2011; Cavicchioli *et al.*, 2015). Such discrepancies could be attributed to differences in husbandry and feeding strategies, on-farm hygienic practices, herd size, and isolation procedures (Dalzini *et al.*, 2016). In line with this explanation, the *L. monocytogenes* isolates were all from the rural region, where indoor housing was more common than in tribal regions. Furthermore, the rural pastures were

contaminated with untreated sewage and human waste, which may favor fodder crop contamination with *L. monocytogenes*. Among the foodborne pathogens, *L. monocytogenes* seems to be a major concern to the food industry because of its ubiquity in the environment and resistance to the damaging effects of low pH, low temperature, and high salt concentration (Lotfollahi *et al.*, 2017). For instance, *L. monocytogenes* has been found to survive a mandatory ripening period of two months in raw milk cheese (Nair *et al.*, 2004). Precautions should, therefore, be taken to minimize the risk of contamination.

The efficiency of the mandatory 60-day ripening period is also questionable concerning the elimination of *E. coli* O157:H7 from raw milk cheese (Nair *et al.*, 2004). Among Shiga toxin-producing *E. coli* (STEC), the O157:H7 serotype is the most common cause of human infection and death. Although cattle is considered the main reservoir of STEC, these organisms have been frequently isolated from the feces of goats, sheep, pigs, dogs, and pigeons (Picozzi *et al.*, 2005). Previous studies on the prevalence of *E. coli* O157:H7 in raw goat and sheep milk have reported rates ranging from as low as 0% to more than 7% (Foschino *et al.*, 2002; Cortés *et al.*, 2005; Picozzi *et al.*, 2005; Solomakos *et al.*, 2009; Lye *et al.*, 2013; Bogdanovičová *et al.*, 2015). In Iran, the contamination of goat and sheep milk with STEC serotype O157 has been previously reported; however, a few isolates subjected to flagellar typing were not of the H7 subtype and were classified as O157, non-H7 strains (Farzan *et al.*, 2012; Momtaz *et al.*, 2012; Rahimi *et al.*, 2012; Ranjbar *et al.*, 2018). In this study, *E. coli* O157:H7 was isolated from five samples belonging to four rural herds. The presence of STEC in milk may be due to fecal contamination or excretion from the infected udder (Stephan *et al.*, 2008). The SCC values of contaminated milk samples did not exceed 5.4×10^5 cells/ml. Thus, milk contamination might be associated with fecal contamination but not mastitis. The contamination occurred in Region D because it was close to the rural areas with high contamination to sewage. The remaining areas (A, B, and C) were tribal regions far from the contaminated sources.

Some foodborne pathogens, such as *L. monocytogenes* may lead to severe infections needing antibiotic therapy. Their antimicrobial resistance can, therefore, give rise to treatment failure. Apart from penicillins (penicillin and ampicillin) and folate pathway inhibitors (trimethoprim-sulfamethoxazole), CLSI does not define any clinical breakpoint for *Listeria* susceptibility testing (Conter *et al.*, 2009). Limited information on the test antibiotics and susceptibility test method has led the researchers to use CLSI criteria for staphylococci. While some of these studies have indicated a high prevalence of antibiotic resistance among *L. monocytogenes* isolates from raw milk and dairy products (Jamali *et al.*, 2013; Sharma *et al.*, 2017; Akrami-Mohajeri *et al.*, 2018), low prevalence has been found in others (Rahimi *et al.*, 2010; Lotfollahi *et al.*, 2017). Penicillin and ampicillin are still the treatment of

choice for listeriosis; the second-choice therapy is a combination of trimethoprim and sulfamethoxazole (Conter *et al.*, 2009). Resistance of the isolates to last-resort antibiotics serves as a warning for public health and reinforces the need to manage the persistent and widespread use of antibiotics in Iran. Using the same assessment method, much lower resistance rates have been reported in a few surveys (Conter *et al.*, 2009; Prieto *et al.*, 2016; Lotfollahi *et al.*, 2017).

The resistance rates of *E. coli* O157:H7 isolates in the present study are similar to those reported by Solomakos *et al.* (2009). A higher resistance frequency has been obtained in several studies (Momtaz *et al.*, 2012; Msolo *et al.*, 2016; Ranjbar *et al.*, 2018). Although some uncertainties exist over the antibiotic treatment of STEC-related infections, monitoring their resistance to the current antibiotics is crucial. Such data would help us to take steps toward controlling the widespread distribution of antibiotic resistance among the organisms of different species (Solomakos *et al.*, 2009).

In the present study, *L. monocytogenes* and *E. coli* O157:H7 were isolated from four and five milk samples belonging to the rural region, respectively. More intensive housing and pasture contamination in the rural region would provide favorable conditions for milk contamination. The isolation of foodborne pathogens, albeit at low levels, raises concerns over infections arising from the consumption of raw milk and its derivatives. Antimicrobial non-susceptibility of the isolates has made the situation much worse. Efforts should, therefore, be made to increase public awareness of the necessity of pasteurization to eliminate microbial safety hazards from milk.

Acknowledgement

This work was supported by Shiraz University.

Conflict of interest

The authors declare that they have no conflict of interest.

References

- Akrami-Mohajeri, F; Derakhshan, Z; Ferrante, M; Hamidiyan, N; Soleymani, M; Conti, GO and Tafti, RD (2018). The prevalence and antimicrobial resistance of *Listeria* spp in raw milk and traditional dairy products delivered in Yazd, central Iran (2016). *Food Chem. Toxicol.*, 114: 141-144.
- AL-Tahiri, R; Omar, S and Rewashdeh A (2008). A study of the occurrence of *Listeria* species in raw sheep milk. *Int. J. Dairy Technol.*, 61: 347-351.
- Andrews, W; Jacobson, A and Hammack, T (2007). Bacteriological analytical manual: *Salmonella*. US Food and Drug Administration.
- Atil, E; Ertas, H and Ozbey, G (2011). Isolation and molecular characterization of *Listeria* spp. from animals,

food and environmental samples. *Vet. Med.*, 56: 386-394.

Bai, J; Shi, X and Nagaraja, T (2010). A multiplex PCR procedure for the detection of six major virulence genes in *Escherichia coli* O157: H7. *J. Microbiol. Methods*. 82: 85-89.

Barbuddhe, S; Malik, S; Bhilegaonkar, K; Kumar, P and Gupta, L (2000). Isolation of *Listeria monocytogenes* and anti-listeriolysin O detection in sheep and goats. *Small Rumin. Res.*, 38: 151-155.

Bogdanovičová, K; Skočková, A; Šťásková, Z; Koláčková, I and Karpíšková, R (2015). The bacteriological quality of goat and ovine milk. *Potr. S. J. F. Sci.*, 9: 72-76.

Bogdanovičová, K; Vyletělová-Klimešová, M; Babák, V; Kalhotka, L; Koláčková, I and Karpíšková, R (2016). Microbiological quality of raw milk in the Czech Republic. *Czech J. Food Sci.*, 34: 3.

Cavicchioli, V; Scatamburlo, T; Yamazi, A; Pieri, F and Nero, L (2015). Occurrence of *Salmonella*, *Listeria monocytogenes*, and enterotoxigenic *Staphylococcus* in goat milk from small and medium-sized farms located in Minas Gerais State Brazil. *J. Dairy Sci.*, 98: 8386-8390.

Chye, FY; Abdullah, A and Ayob, MK (2004). Bacteriological quality and safety of raw milk in Malaysia. *Food Microbiol.*, 21: 535-541.

CLSI (Clinical and Laboratory Standards Institute) (2005). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria (M45-P). Clinical and Laboratory Standards Institute (CLSI).

CLSI (Clinical and Laboratory Standards Institute) (2015). M100-S25: Performance standards for antimicrobial susceptibility testing. Twenty-Fifth Informational Supplement.

Conter, M; Paludi, D; Zanardi, E; Ghidini, S; Vergara, A and Ianieri, A (2009). Characterization of antimicrobial resistance of foodborne *Listeria monocytogenes*. *Int. J. Food Microbiol.*, 128: 497-500.

Cortés, C; De la Fuente, R; Blanco, J; Blanco, M; Blanco, J; Dhabi, G; Mora, A; Justel, P; Contreras, A and Sanchez, A (2005). Serotypes, virulence genes and intimin types of verotoxin-producing *Escherichia coli* and enteropathogenic *E. coli* isolated from healthy dairy goats in Spain. *Vet. Microbiol.*, 110: 67-76.

Cortés, C; de la Fuente, R; Contreras, A; Sánchez, A; Corrales, JC; Martínez, S and Orden, JA (2006). A survey of *Salmonella* spp and *Campylobacter* spp in dairy goat faeces and bulk tank milk in the Murcia region of Spain. *Ir. Vet. J.*, 59: 391.

Dalzini, E; Bernini, V; Bertasi, B; Daminelli, P; Losio, MN and Varisco, G (2016). Survey of prevalence and seasonal variability of *Listeria monocytogenes* in raw cow milk from Northern Italy. *Food Control*. 60: 466-470.

Desenclos, JC; Bouvet, P; Benz-Lemoine, E; Grimont, F; Desqueyroux, H; Rebiere, I and Grimont, PA (1996). Large outbreak of *Salmonella enterica* serotype paratyphi B infection caused by a goats' milk cheese, France, 1993: a case finding and epidemiological study. *BMJ*. 312: 91-94.

Dipinetto, L; Santaniello, A; Fontanella, M; Lagos, K; Fioretti, A and Menna, L (2006). Presence of shiga toxin-producing *Escherichia coli* O157: H7 in living layer hens. *Lett. Appl. Microbiol.*, 43: 293-295.

Dominguez, M; Jourdan-Da Silva, N; Vaillant, V; Pihier, N; Kermin, C; Weill, FX; Delmas, G; Kerouanton, A; Brisabois, A and de Valk, H (2009). Outbreak of *Salmonella enterica* serotype montevideo infections in France linked to consumption of cheese made from raw milk. *Foodborne Pathog. Dis.*, 6: 121-128.

Ekici, K; Bozkurt, H and Isleyici, O (2004). Isolation of some pathogens from raw milk of different milch animals. *Pak. J. Nutr.*, 3: 161-162.

Fagundes, PC; Ceotto, H; Potter, A; de Paiva Brito, MAV; Brede, D; Nes, IF and de Freire Bastos, MDC (2011). Hycin 3682, a bioactive peptide produced by *Staphylococcus hyicus* 3682 with potential applications for food preservation. *Res. Microbiol.*, 162: 1052-1059.

Farzan, R; Rahimi, E and Momtaz, H (2012). Virulence properties of shiga toxin-producing *Escherichia coli* isolated from Iranian raw milk and dairy products. *Slov. Vet. Res.*, 49: 159-166.

Foschino, R; Invernizzi, A; Barucco, R and Stradiotto, K (2002). Microbial composition, including the incidence of pathogens, of goat milk from the Bergamo region of Italy during a lactation year. *J. Dairy Res.*, 69: 213-225.

Furrer, B; Candrian, U; Hoeferlein, C and Luethy, J (1991). Detection and identification of *Listeria monocytogenes* in cooked sausage products and in milk by *in vitro* amplification of haemolysin gene fragments. *J. Appl. Microbiol.*, 70: 372-379.

Gonzales-Barron, U; Gonçalves-Tenório, A; Rodrigues, V and Cadavez, V (2017). Foodborne pathogens in raw milk and cheese of sheep and goat origin: a meta-analysis approach. *Curr. Opin. Food Sci.*, 18: 7-13.

Hill, B; Smythe, B; Lindsay, D and Shepherd, J (2012). Microbiology of raw milk in New Zealand. *Int. J. Food Microbiol.*, 157: 305-308.

Hitchins, A and Jinneman, K (2013). Bacteriological analytical manual chapter 10: Detection and enumeration of *Listeria monocytogenes* in foods. Silver Spring, MD, USA: US Food and Drug Administration, Page Last Updated.

Hosseini-zadeh, S; Shekarforoush, SS; Ansari-Lari, M; EsalatPanah-Fard Jahromi, M; Berizi, E and Abdollahi, M (2012). Prevalence and risk factors for *Listeria monocytogenes* in broiler flocks in Shiraz, southern Iran. *Foodborne Pathog. Dis.*, 9: 568-572.

Jamali, H; Radmehr, B and Thong, KL (2013). Prevalence, characterisation, and antimicrobial resistance of *Listeria* species and *Listeria monocytogenes* isolates from raw milk in farm bulk tanks. *Food Control*. 34: 121-125.

Lefebvre, B; Diarra, MS; Vincent, C; Moisan, H and Malouin, F (2009). Relative cytotoxicity of *Escherichia coli* O157: H7 isolates from beef cattle and humans. *Foodborne Pathog. Dis.*, 6: 357-364.

Lotfollahi, L; Chaharbaleh, A; Rezaee, MA and Hasani, A (2017). Prevalence, antimicrobial susceptibility and multiplex PCR-serotyping of *Listeria monocytogenes* isolated from humans, foods and livestock in Iran. *Microb. Pathog.*, 107: 425-429.

Lye, Y; Afsah-Hejri, L; Chang, W; Loo, Y; Puspanadan, S; Kuan, C; Goh, S; Shahril, N; Rukayadi, Y and Khatib, A (2013). Risk of *Escherichia coli* O157: H7 transmission linked to the consumption of raw milk. *Int. Food Res. J.*, 20: 1001.

Mazurek, J; Salehi, E; Propes, D; Holt, J; Bannerman, T; Nicholson, LM; Bundesen, M; Duffy, R and Moolenaar, RL (2004). A multistate outbreak of *Salmonella enterica* serotype Typhimurium infection linked to raw milk consumption—Ohio, 2003. *J. Food Prot.*, 67: 2165-2170.

Momtaz, H; Farzan, R; Rahimi, E; Safarpoor Dehkordi, F and Souod, N (2012). Molecular characterization of shiga toxin-producing *Escherichia coli* isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. *Sci. World J.*, 2012: 231342.

Morgan, F; Massouras, T; Barbosa, M; Roseiro, L; Rivasco, F; Kandarakis, I; Bonnin, V; Fistakoris, M; Anifantakis, E and Jaubert, G (2003). Characteristics of

goat milk collected from small and medium enterprises in Greece, Portugal and France. *Small Rumin. Res.*, 47: 39-49.

Msolo, L; Igbinosa, EO and Okoh, AI (2016). Prevalence and antibiogram profiles of *Escherichia coli* O157: H7 isolates recovered from three selected dairy farms in the Eastern Cape Province, South Africa. *Asian Pac. J. Trop. Dis.*, 6: 990-995.

Mühlherr, JE; Zweifel, C; Corti, S; Blanco, J and Stephan, R (2003). Microbiological quality of raw goat's and ewe's bulk-tank milk in Switzerland. *J. Dairy Sci.*, 86: 3849-3856.

Mungai, EA; Behravesh, CB and Gould, LH (2015). Increased outbreaks associated with nonpasteurized milk, United States, 2007-2012. *Emerg. Infect. Dis.*, 21: 119.

Nair, MKM; Vasudevan, P; Hoagland, T and Venkitanarayanan, K (2004). Inactivation of *Escherichia coli* O157: H7 and *Listeria monocytogenes* in milk by caprylic acid and monocaprylin. *Food Microbiol.*, 21: 611-616.

Nero, LA; De Mattos, MR; de Aguiar Ferreira Barros, M; Ortolani, MBT; Beloti, V and de Melo Franco, BDG (2008). *Listeria monocytogenes* and *Salmonella* spp. in raw milk produced in Brazil: Occurrence and interference of indigenous microbiota in their isolation and development. *Zoonoses Public Health*, 55: 299-305.

Osman, KM; Zolnikov, TR; Samir, A and Orabi, A (2014). Prevalence, pathogenic capability, virulence genes, biofilm formation, and antibiotic resistance of *Listeria* in goat and sheep milk confirms need of hygienic milking conditions. *Pathog. Glob. Health*, 108: 21-29.

Paape, M; Wiggans, G; Bannerman, DD; Thomas, D; Sanders, A; Confreras, A; Moroni, P and Miller, R (2007). Monitoring goat and sheep milk somatic cell counts. *Small Rumin. Res.*, 68: 114-125.

Picozzi, C; Foschino, R; Heuvelink, A and Beumer, R (2005). Phenotypic and genotypic characterization of sorbitol-negative or slow-fermenting (suspected O157) *Escherichia coli* isolated from milk samples in Lombardy region. *Lett. Appl. Microbiol.*, 40: 491-496.

Pires, ACDS; Soares, NdFF; da Silva, LHM; de Andrade, NJ; Silveira, MFA and de Carvalho, AF (2010). Polydiacetylene as a biosensor: fundamentals and applications in the food industry. *Food Bioprocess Technol.*, 3: 172-181.

Prieto, M; Martínez, C; Aguerre, L; Rocca, MF; Cipolla, L and Callejo, R (2016). Antibiotic susceptibility of *Listeria monocytogenes* in Argentina. *Enferm. Infect. Microbiol. Clin.*, 34: 91-95.

Rahimi, E; Ameri, M and Momtaz, H (2010). Prevalence and antimicrobial resistance of *Listeria* species isolated from milk and dairy products in Iran. *Food Control*, 21: 1448-1452.

Rahimi, E; Khamesipour, F; Yazdi, F and Momtaz, H (2012). Isolation and characterization of enterohaemorrhagic *Escherichia coli* O157: H7 and EHEC O157: NM from raw bovine, camel, water buffalo, caprine and ovine milk in Iran. *Kafkas. Univ. Vet. Fak. Derg.*, 18: 559-564.

Ranjbar, R; Dehkordi, FS; Shahreza, MHS and Rahimi, E (2018). Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of shiga-toxin producing *Escherichia coli* strains isolated from raw milk and traditional dairy products. *Antimicrob. Resist. Infect. Control*, 7: 53.

Shaigan Nia, S; Rostami, F; Safarpour Dehkordi, F; Rahimi, E; Yahaghi, E; Khodaverdi Darian, E and Bagheri Moghadam, M (2014). Isolation and evaluation virulence factors of *Salmonella typhimurium* and *Salmonella enteritidis* in milk and dairy products. *Iran. J. Med. Microbiol.*, 8: 54-61.

Sharma, S; Sharma, V; Dahiya, DK; Khan, A; Mathur, M and Sharma, A (2017). Prevalence, virulence potential, and antibiotic susceptibility profile of *Listeria monocytogenes* isolated from bovine raw milk samples obtained from Rajasthan, India. *Foodborne Pathog. Dis.*, 14: 132-140.

Solomakos, N; Govaris, A; Angelidis, AS; Pournaras, S; Burriel, AR; Kritis, SK and Papageorgiou, DK (2009). Occurrence, virulence genes and antibiotic resistance of *Escherichia coli* O157 isolated from raw bovine, caprine and ovine milk in Greece. *Food Microbiol.*, 26: 865-871.

Stephan, R; Schumacher, S; Corti, S; Krause, G; Danuser, J and Beutin, L (2008). Prevalence and characteristics of shiga toxin-producing *Escherichia coli* in Swiss raw milk cheeses collected at producer level. *J. Dairy Sci.*, 91: 2561-2565.