Abrar, S; Ain, NU; Liaqat, H; Hussain, S; Rasheed, F and Riaz, S (2019). Distribution of bla CTX-M, bla TEM, bla SHV and bla OXA genes in extended-spectrum-β-lactamase-producing clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrob. Resist. Infect. Control. 8: 1-10.
Agrawal, S; Singh, AP; Singh, R; Saikia, R; Choudhury, S; Shukla, A; Prabhu, SN and Agrawal, J (2021). Molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolated from postpartum uterine infection in dairy cattle in India. Vet. World. 14: 200-209.
Alegria, A; Arias-Temprano, M; Fernandez-Natal, I; Rodriguez-Calleja, JM; Garcia-Lopez, ML and Santos, JA (2020). Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. Int. J. Environ. Res. Public Health. 17: 1-2.
Arun, A; Jaiswal, U; Tripathi, S; Singh, AP; Choudhury, S and Prabhu, SN (2022). Surveillance of carbapenem-resistant gram-negative bacteria from animal sources in Mathura region, Uttar Pradesh, India. Explor. Anim. Med. Res., 12: 91-98.
Athanasakopoulou, Z; Reinicke, M; Diezel, C; Sofia, M; Chatzopoulos, DC; Braun, SD; Reissig, A; Spyrou, V; Monecke, S; Ehricht, R and Tsilipounidaki, K (2021). Antimicrobial resistance genes in ESBL-producing Escherichia coli isolates from animals in Greece. Antibiotics. 10: 3-4.
Ayukekbong, JA; Ntemgwa, M and Atabe, AN (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob. Resist. Infect. Control. 6: 1-8.
Banerjee, J; Bhattacharyya, D; Habib, M; Chaudhary, S; Biswas, S; Maji, C; Nanda, PK; Das, AK; Dandapat, P; Samanta, I; Lorenzo, JM; Dutt, T and Bandyopadhyay, S (2022). Antimicrobial resistance pattern, clustering mechanisms and correlation matrix of drug-resistant Escherichia coli in black bengal goats in West Bengal, India. J. Antibiot., 11: 7-8.
Bank, W (2017). Drug-resistant infections: a threat to our economic future. World Bank. PP: 17-19.
Boonyasiri, A; Tangkoskul, T; Seenama, C; Saiyarin, J; Tiengrim, S and Thamlikitkul, V (2014). Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health, 108: 235-245.
Bradford, PA (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 14: 933-951.
Brossier, F; Sougakoff, W and Jarlier, V (2008). Phenotypic detection of ESBL production in Enterobacteriaceae: review and bench guide. Clin. Microbiol. Infect., 14: 90-103.
Brower, CH; Mandal, S; Hayer, S; Sran, M; Zehra, A; Patel, SJ; Kaur, R; Chatterjee, L; Mishra, S; Das, BR and Singh, P (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environ. Health Perspect., 125: 077015-5.
Bush, K and Jacoby, GA (2010). Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 54: 969-976.
Cantón, R; Coque, TM and Baquero, F (2003). Multi-resistant gram-negative bacilli: from epidemics to endemics. Curr. Opin. Infect. Dis., 16: 315-325.
Castanheira, M; Simner, PJ and Bradford, PA (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resis., 3: 8-10.
Cavaco, LM; Abatih, E; Aarestrup, FM and Guardabassi, L (2008). Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome. Antimicrob. Agents Chemother., 52: 3612-616.
Chen, S; Zhao, S; White, DG; Schroeder, CM; Lu, R; Yang, H; McDermott, PF; Ayers, S and Meng, J (2004). Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol., 70: 1-7.
CLSI (2020). Performance standards for antimicrobial susceptibility testing. (M100 30th Edn.), PP: 60-71.
Da Costa, PM; Loureiro, L and Matos, AJ (2013). Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int. J. Environ. Res. Public Health. 10: 278-294.
Dai, L; Lu, LM; Wu, CM; Li, BB; Huang, SY; Wang, SC; Qi, YH and Shen, JZ (2008). Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. FEMS Microbiol. Lett., 286: 178-183.
Das, L; Borah, P; Sharma, RK; Malakar, D; Saikia, GK; Sharma, K; Tamuly, S and Dutta, R (2020). Phenotypic and molecular characterization of extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae isolates from various samples of animal origin from Assam, India. bioRxiv. 2020: 2020-05.
Davis, R and Brown, PD (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J. Med. Microbiol., 65: 261-271.
Doosti, A; Pourabbas, M; Arshi, A; Chehelgerdi, M and Kabiri, H (2015). TEM and SHV genes in Klebsiella pneumoniae isolated from cockroaches and their antimicrobial resistance pattern. Osong Public Health Res. Perspect., 6: 3-8.
Durso, LM and Cook, KL (2014). Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr. Opin. Microbiol., 19: 37-44.
Dutta, TK; Warjri, I; Roychoudhury, P; Lalzampuia, H; Samanta, I; Joardar, SN; Bandyopadhyay, S and Chandra, R (2013). Extended-spectrum-β-lactamase-producing Escherichia coli isolate possessing the Shiga toxin gene (stx1) belonging to the O64 serogroup associated with human disease in India. J. Clin. Microbiol., 51: 2008-2009.
Elsharkawy, SA; Latif, H; Purnawarman, T and Rahayu, P (2024). Analysis of beta-lactam antibiotic resistance genes in Escherichia coli isolated from dairy cattle manure in Bogor, Indonesia. Ger. J. Vet. Res., 4: 16-26.
Espadale, E; Pinchbeck, G; Williams, NJ; Timofte, D; McIntyre, KM and Schmidt, VM (2018). Are the hands of veterinary staff a reservoir for antimicrobial-resistant bacteria? A randomized study to evaluate two hand hygiene rubs in a veterinary hospital. Microb. Drug Resist., 24: 1607-1616.
Founou, RC; Founou, LL and Essack, SY (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PloS One. 12: 2-3.
Heredia, N and García, S (2018). Animals as sources of food-borne pathogens: A review. Anim. Nutr., 4: 250-255.
Ho, PL; Chow, KH; Lai, EL; Lo, WU; Yeung, MK; Chan, J; Chan, PY and Yuen, KY (2011). Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to ‘critically important’antibiotics among food animals in Hong Kong, 2008-10. J. Antimicrob. Chemother., 66: 765-768.
Huang, YH; Kuan, NL and Yeh, KS (2020). Characteristics of extended-spectrum β-lactamase–producing Escherichia coli from dogs and cats admitted to a veterinary teaching hospital in Taipei, Taiwan from 2014 to 2017. Front. Vet. Sci., 7: 2-3.
Kashoma, IP; Kassem, II; Kumar, A; Kessy, BM; Gebreyes, W; Kazwala, RR and Rajashekara, G (2015). Antimicrobial resistance and genotypic diversity of Campylobacter isolated from pigs, dairy, and beef cattle in Tanzania. Front. Microbiol., 6: 3-4.
Klotz, P; Higgins, PG; Schaubmar, AR; Failing, K; Leidner, U; Seifert, H; Scheufen, S; Semmler, T and Ewers, C (2019). Seasonal occurrence and carbapenem susceptibility of bovine Acinetobacter baumannii in Germany. Front. Microbiol., 10: 2-3.
Krumperman, PH (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol., 46: 165-170.
Kumar, K; Sharma, NS; Kaur, P and Arora, AK (2022). Molecular detection of antimicrobial resistance genes and virulence genes in E. coli isolated from sheep and goat fecal samples. Indian J. Anim. Res., 56: 208-214.
Lalruatdiki, A; Dutta, TK; Roychoudhury, P and Subudhi, PK (2018). Extended-spectrum β-lactamases producing multidrug resistance Escherichia coli, Salmonella and Klebsiella pneumoniae in pig population of Assam and Meghalaya, India. Vet. World. 11: 868-873.
Laxminarayan, R; Duse, A; Wattal, C; Zaidi, AK; Wertheim, HF; Sumpradit, N; Vlieghe, E; Hara, GL; Gould, IM; Goossens, H and Greko, C (2013). Antibiotic resistance- the need for global solutions. Lancet Infect. Dis., 13: 1057-1098.
Lee, D; Oh, JY; Sum, S and Park, HM (2021). Prevalence and antimicrobial resistance of Klebsiella species isolated from clinically ill companion animals. J. Vet. Sci., 22: 5-9.
Leifert, C; Ball, K; Volakakis, N and Cooper, JM (2008). Control of enteric pathogens in ready to eat vegetable crops in organic and ‘low input’production systems: a HACCP based approach. J. Appl. Microbiol., 105: 931-950.
Liu, XJ; Lyu, Y; Li, Y; Xue, F and Liu, J (2016). Trends in antimicrobial resistance against Enterobacteriaceae strains isolated from blood: A 10-year epidemiological study in mainland China (2004-2014). Chin. Med. J., 130: 2050-2055.
Liu, JH; Wei, SY; Ma, JY; Zeng, ZL; Lü, DH; Yang, GX and Chen, ZL (2007). Detection and characterisation of CTX-M and CMY-2 β-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China. Int. J. Antimicrob. Agents. 29: 576-581.
Magiorakos, AP; Srinivasan, A; Carey, RB; Carmeli, Y; Falagas, ME; Giske, CG; Harbarth, S; Hindler, JF; Kahlmeter, G; Olsson-Liljequist, B and Paterson, DL (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 18: 268-281.
Maynard, C; Fairbrother, JM; Bekal, S; Sanschagrin, F; Levesque, RC; Brousseau, R; Masson, L; Lariviere, S and Harel, J (2003). Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother., 47: 3214-21.
Medeiros, AA (1997). Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis., 24: 19-45.
Moudgil, P; Bedi, JS; Moudgil, AD; Gill, JPS and Aulakh, RS (2018). Emerging issue of antibiotic resistance from food producing animals in India: Perspective and legal framework. Food Rev. Int., 34: 447-462.
Mthembu, MS; Biyela, PT; Djarova, TG and Basson, AK (2010). The use of antibiotic resistance profiling as a means of tracing sources of fecal contamination in source waters. Water Sci. Technol., 10: 209-215.
Mthembu, TP; Zishiri, OT and El Zowalaty, ME (2019). Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect. Drug Resist., 12: 3537-3548.
Mulani, MS; Kamble, EE; Kumkar, SN; Tawre, MS and Pardesi, KR (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol., 10: 1-2.
Navarro, F; Perez-Trallero, E; Marimon, JM; Aliaga, R; Gomariz, M and Mirelis, B (2001). CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999–December 2000). J. Antimicrob. Chemother., 48: 383-389.
Ng, LK; Martin, I; Alfa, M and Mulvey, M (2001). Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes. 15: 209-215.
Njeru, J (2020). Emerging carbapenem resistance in ESKAPE pathogens in sub-Saharan Africa and the way forward. Ger. J. Microbiol., 1: 3-6.
Nshama, RP; Katakweba, AS; Kashoma, IP; Gahamanyi, N and Komba, EV (2022). Prevalence and antimicrobial susceptibility profiles of Campylobacter coli isolated from broilers and layers in Mwanza and Arusha, Tanzania. Ger. J. Vet. Res., 2: 16-24.
Osundiya, OO; Oladele, RO and Oduyebo, OO (2013). Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos university teaching hospital. Afr. J. Clin. Exp. Microbiol., 14: 164-168.
Paterson, DL and Bonomo, RA (2005). Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev., 18: 657-686.
Pires, J; Huisman, JS; Bonhoeffer, S and Van Boeckel, TP (2022). Increase in antimicrobial resistance in Escherichia coli in food animals between 1980 and 2018 assessed using genomes from public databases. J. Antimicrob. Chemother., 77: 646-655.
Ramatla, T; Mafokwane, T; Lekota, K; Monyama, M; Khasapane, G; Serage, N; Nkhebenyane, J; Bezuidenhout, C and Thekisoe, O (2023). “One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob., 22: 11-13.
Robicsek, A; Strahilevitz, J; Sahm, DF; Jacoby, GA and Hooper, DC (2006). qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother., 50: 2872-2874.
Sandhu, R; Dahiya, S and Sayal, P (2016). Evaluation of multiple antibiotic resistance (MAR) index and doxycycline susceptibility of Acinetobacter species among inpatients. Indian J. Microbiol. Res., 3: 299-304.
Schmiedel, J: Falgenhauer, L; Domann, E; Bauerfeind, R; Prenger-Berninghoff, E; Imirzalioglu, C and Chakraborty, T (2014). Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol., 14: 1-13.
Schmitt, K; Kuster, SP; Zurfluh, K; Jud, RS; Sykes, JE; Stephan, R and Willi, B (2021). Transmission chains of extended-spectrum beta-lactamase-producing Entero-bacteriaceae at the companion animal veterinary clinic–household interface. Antibiot., 10: 8-9.
Shikha, D; Wazir, VS; Rashid, M; Bhat, MA; Sharma, I; Taku, A; Gazal, S; Mishra, S; Tikoo, M and Singh, BP (2022). Molecular characterization and antimicrobial resistance profiling of extended spectrum Beta-lactamase (ESBL) producing Escherichia coli in Bovines from J and K, India. Ind. J. Anim. Res., 1: 2-3.
Singh, F; Hirpurkar, SD; Shakya, S; Rawat, N; Devangan, P; Khan, FF and Bhandekar, SK (2017). Presence of enterobacteria producing extended-spectrum beta-lactamases and/or carbapenemases in animals, humans and environment in India. Thai J. Vet. Med., 47: 35-43.
Song, J; Oh, SS; Kim, J; Park, S and Shin, J (2020). Clinically relevant extended-spectrum β-lactamase–producing Escherichia coli isolates from food animals in South Korea. Front. Microbiol., 11: 3-4.
Suay-García, B; Galán, F; Rodríguez-Iglesias, MA and Pérez-Gracia, MT (2019). Detection and characterization of extended-spectrum beta-lactamases-producing Escherichia coli in animals. Vector-Borne Zoonot. Dis., 19: 115-120.
Sundqvist, M; Geli, P; Andersson, DI; Sjölund-Karlsson, M; Runehagen, A; Cars, H; Abelson-Storby, K; Cars, O and Kahlmeter, G (2010). Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J. Antimicrob. Chemother., 65: 350-360.
Sweileh, WM (2021). Global research activity on antimicrobial resistance in food-producing animals. Arch. Pub. Health. 79: 1-11.
Tacconelli, E; Sifakis, F; Harbarth, S; Schrijver, R; van Mourik, M; Voss, A; Sharland, M; Rajendran, NB; Rodríguez-Baño, J; Bielicki, J and de Kraker, M (2018). Surveillance for control of antimicrobial resistance. Lancet Infect. Dis., 18: e99-e106.
Tewari, R; Mitra, S; Ganaie, F; Das, S; Chakraborty, A; Venugopal, N; Shome, R; Rahman, H and Shome, BR (2019). Dissemination and characterisation of Escherichia coli producing extended-spectrum β-lactamases, AmpC β-lactamases and metallo-β-lactamases from livestock and poultry in Northeast India: A molecular surveillance approach. J. Glob. Antimicrob. Resist., 17: 209-215.
Torres, RT: Carvalho, J; Fernandes, J; Palmeira, JD; Cunha, MV and Fonseca, C (2021). Mapping the scientific knowledge of antimicrobial resistance in food-producing animals. One Health. 13: 1-2.
Van Boeckel, TP; Pires, J; Silvester, R; Zhao, C; Song, J; Criscuolo, NG; Gilbert, M; Bonhoeffer, S and Laxminarayan, R (2019). Global trends in antimicrobial
resistance in animals in low-and middle-income countries. Science. 365: 1251-1252.
Vantarakis, A; Venieri, D; Komninou, G and Papapetropoulou, M (2006). Differentiation of fecal Escherichia coli from humans and animals by multiple antibiotic resistance analysis. Lett. Appl. Microbiol., 42: 71-77.
VinodhKumar, OR; Singh, BR; Sinha, DK; Pruthvishree, BS; Tamta, S; Dubal, ZB; Karthikeyan, R; Rupner, RN and Malik, YS (2019). Risk factor analysis, antimicrobial resistance and pathotyping of Escherichia coli associated with pre-and post-weaning piglet diarrhoea in organised farms, India. Epidemiol. Infect., 147: 1-6.
Wall, BA; Mateus, ALP; Marshall, L; Pfeiffer, DU; Lubroth, J; Ormel, HJ; Otto, P and Patriarchi, A (2016). Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Food and Agriculture Organization of the United Nations. PP: 1-2.
Wang, Y; Zhou, J; Li, X; Ma, L; Cao, X; Hu, W; Zhao, L; Jing, W; Lan, X; Li, Y and Gong, X (2020). Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J. Glob. Antimicrob. Resist., 22: 726-732.
Wareth, G and Neubauer, H (2021). The animal-foods-environment interface of Klebsiella pneumoniae in Germany: an observational study on pathogenicity, resistance development and the current situation. Vet. Res., 52: 1-3.
WHO (2014). Antimicrobial resistance: global report on surveillance. World Health Organization. PP: 2-3.
WHO (2019). Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. World Health Organization. PP: 1-2.
Widodo, A; Effendi, MH and Khairullah, AR (2020). Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from livestock. Sys. Rev. Pharm., 11: 382-392.
Widodo, A; Lamid, M; Effendi, MH; Tyasningsih, W; Raharjo, D; Khairullah, AR; Kurniawan, SC; Yustinasari, LR; Riwu, KHP and Silaen, OSM (2023). Molecular identification of blaTEM and blaCTX-M genes in multidrug-resistant Escherichia coli found in milk samples from dairy cattle farms in Tulungagung, Indonesia. J. Vet. Res., 67: 381-388.
Woodford, N; Wareham, DW; Guerra, B and Teale, C (2014). Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J. Antimicrob. Chemother., 69: 287-291.
Yang, H; Chen, S; White, DG; Zhao, S; McDermott, P; Walker, R and Meng, J (2004). Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J. Clin. Microbiol., 42: 3483-3489.
Yang, L; Shen, Y; Jiang, J; Wang, X; Shao, D; Lam, MM; Holt KE; Shao, B; Wu, C; Shen, J and Walsh, TR (2022). Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. Nat. Food 3: 197-205.