Aggarwal, BB; Shishodia, S; Ashikawa, K and Bharti, AC (2002). The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Inflamm. Allergy Drug Targets, 1: 327-341.
Alluwaimi, A; Farver, T and Cullor, J (2003). Transcriptional activity of IL-8 in healthy bovine mammary gland at mid and late-lactation. Pak. J. Biol. Sci., 6: 729-731.
Asuero, AG; Sayago, A and González, AG (2006). The correlation coefficient: An overview. Crit. Rev. Anal. Chem., 36: 41-59.
Bannerman, DD; Paape, MJ; Lee, JW; Zhao, X; Hope, JC and Rainard, P (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Vaccine Immunol., 11: 463-472.
Bhatt, VD; Shah, TM; Nauriyal, DS; Kunjadia, AP and Joshi, CG (2014). Evaluation of a topical herbal drug for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis. AYU., 35: 198-205.
Boulanger, MJ; Bankovich, AJ; Kortemme, T; Baker, D and Garcia, KC (2003). Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol. Cell., 12: 577-589.
Bradley, J (2008). TNF-α mediated inflammatory disease. J. Pathol., 214: 149-160.
Bradley, A and Green, M (2001). Adaptation of Escherichia coli to the bovine mammary gland. J. Clin. Microbiol., 39: 1845-1849.
Brankatschk, R; Bodenhausen, N; Zeyer, J and Bürgmann, H (2012). Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Environ. Microbiol., 78: 4481-4489.
Buitenhuis, B; Røntved, CM; Edwards, SM; Ingvartsen, KL and Sørensen, P (2011). In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis. BMC Genom., 12: 1-10.
Burvenich, C; Van Merris, V; Mehrzad, J; Diez-Fraile, A and Duchateau, L (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res., 34: 521-564.
Chen, W; Liu, Y; Yin, J; Deng, Y; Ali, T; Zhang, J; Cheng, J; Gao, J and Han, B (2017). Cloning, expression, and immunogenicity of fimbrial-F17A subunit vaccine against Escherichia coli isolated from bovine mastitis. Biomed. Res. Int., 1 : 3248483.
Cobirka, M; Tancin, V and Slama, P (2020). Epidemiology and classification of mastitis. Animals. 10: 2212.
De Schepper, S; De Ketelaere, A; Bannerman, D; Paape, M; Peelman, L and Burvenich, C (2008). The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Vet. Res., 39: 1-23.
Diehl, S and Rincón, M (2002). The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol., 39: 531-536.
Flavell, RA (2002). The relationship of inflammation and initiation of autoimmune disease: role of TNF super family members. Curr. Top. Microbiol. Immunol., 266: 1-9.
Fonseca, I; Silva, PV; Lange, CC; Guimarães, MF; Weller, MMDCA; Sousa, KRS; Lopes, PS; Guimarães, JD and Guimarães, SE (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32: 776-781.
Galligan, C and Coomber, B (2000). Effects of human IL-8 isoforms on bovine neutrophil function in vitro. Vet. Immunol. Immunopathol., 74: 71-85.
Guo, YF; Xu, NN; Sun, W; Zhao, Y; Li, CY and Guo, MY (2017). Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-κB activation and MMPs expression. Oncotarget. 8: 28481-28493.
Hamilton, JA (2008). Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol., 8: 533-544.
Hassan, RF and Torky, HA (2016). Cytokines expression associated with E. coli infection in bovine mammary glands. Alex. J. Vet., 48: 54-60.
Hisaeda, K; Hagiwara, K; Eguchi, J; Yamanaka, H; Kirisawa, R and Iwai, H (2001). Interferon-γ and tumor necrosis factor-α levels in sera and whey of cattle with naturally occurring coliform mastitis. J. Vet. Med. Sci., 63: 1009-1011.
Hucker, GJ (1933). The laboratory detection of bovine mastitis. New York Agr. Exp. Station Bul., 626: 1-24.
Huma, ZI; Sharma, N; Kour, S; Tandon, S; Guttula, PK; Kour, S; Singh, AK; Singh, R and Gupta, MK (2020). Putative biomarkers for early detection of mastitis in cattle. Anim. Prod. Sci., 60: 1721-1736.
Jiang, KF; Zhao, G; Deng, GZ; Wu, HC; Yin, NN; Chen, XY; Qiu, CW and Peng, XL (2017). Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway. Acta Pharmacol. Sin., 38: 211-222.
Kaper, JB; Nataro, JP and Mobley, HL (2004). Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2: 123-140.
Kauf, A; Rosenbusch, R; Paape, M and Bannerman, DD (2007). Innate immune response to intramammary Mycoplasma bovis infection. J. Dairy Sci., 90: 3336-3348.
Kehrli Jr, ME and Harp, JA (2001). Immunity in the mammary gland. Vet. Clin. North Am. Food Anim., 17: 495-516.
Lee, JW; Bannerman, D; Paape, M; Huang, MK and Zhao, X (2006). Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR. Vet. Res., 37: 219-229.
Leutenegger, CM; Alluwaimi, AM; Smith, WL; Perani, L and Cullor, JS (2000). Quantitation of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan® polymerase chain reaction. Vet. Immunol. Immunopathol., 77: 275-287.
Livak, KJ and Schmittgen, TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25: 402-408.
Ma, J; Zhu, Y; Zhang, L; Zhuge, Z; Liu, P; Yan, X; Gao, H and Wang, J (2011). Serum concentration and mRNA expression in milk somatic cells of toll-like receptor 2, toll-like receptor 4, and cytokines in dairy cows following intramammary inoculation with Escherichia coli. J. Dairy Sci., 94: 5903-5912.
McClenahan, D; Krueger, R; Lee, HY; Thomas, C; Kehrli Jr, ME and Czuprynski, C (2006). Interleukin-8 expression by mammary gland endothelial and epithelial cells following experimental mastitis infection with E. coli. Comp. Immunol. Microbiol. Infect. Dis., 29: 127-137.
Mitterhuemer, S; Petzl, W; Krebs, S; Mehne, D; Klanner, A; Wolf, E; Zerbe, H and Blum, H (2010). Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland. BMC Genom., 11: 1-16.
Noleto, PG; Gilbert, FB; Rossignol, C; Cunha, P; Germon, P; Rainard, P and Martins, RP (2023). Punch-excised explants of bovine mammary gland to model early immune response to infection. J. Anim. Sci. Biotechnol., 14: 100.
Özaktay, AC; Kallakuri, S; Takebayashi, T; Cavanaugh, JM; Asik, I; DeLeo, JA and Weinstein, JN (2006). Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur. Spine. J., 15: 1529-1537.
Paape, M; Mehrzad, J; Zhao, X; Detilleux, J and Burvenich, C (2002). Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J. Mammary Gland Biol. Neoplasia. 7: 109-121.
Pfaffl, MW; Horgan, GW and Dempfle, L (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res., 30: e36.
Rabot, A; Wellnitz, O; Meyer, HH and Bruckmaier, RM (2007). Use and relevance of a bovine mammary gland explant model to study infection responses in bovine mammary tissue. J. Dairy Res., 74: 93-99.
Rambeaud, M; Clift, R and Pighetti, G (2006). Association of a bovine CXCR2 gene polymorphism with neutrophil survival and killing ability. Vet. Immunol. Immunopathol., 111: 231-238.
Remick, DG (2005). Interleukin-8. Crit. Care Med., 33: 466-467.
Riollet, C; Rainard, P and Poutrel, B (2000). Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol., 7: 161-167.
Riollet, C; Rainard, P and Poutrel, B (2002). Cells and cytokines in inflammatory secretions of bovine mammary gland. In: Mol, JA and Clegg, RA (Eds.), Biology of the mammary gland advances in experimental medicine and biology. (1st Edn.), Vol. 480, Boston, MA, Springer. PP: 247-258.
Safak, T; Rısvanli, A and Asci-Toraman, Z (2022). Th1/Th2 cytokine polarization in milk according to different pathogens causing subclinical mastitis in cows. J. Dairy Product. Proces. Improv., 72: 105-113.
Sbuster, D; Kehrli, M and Stevens, MG (1993). Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am. J. Vet. Res., 54: 80.
Schukken, YH; Bennett, GJ; Zurakowski, MJ; Sharkey, HL; Rauch, BJ; Thomas, MJ; Ceglowski, B; Saltman, RL; Belomestnykh, N and Zadoks, R (2011). Randomized clinical trial to evaluate the efficacy of a 5-day
ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis. J. Dairy Sci., 94: 6203-6215.
Shuster, DE; Kehrli Jr, ME; Rainard, P and Paape, M (1997). Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect. Immun., 65: 3286-3292.
Singathia, R; Sharma, DK and Gaurav, A (2023). Relative expression of Toll-like receptors, cytokines and acute phase protein by real-time PCR in milk somatic cells of subclinical mastitis affected cattle. Indian J. Anim. Res., 1: 780-784.
Smith, JA; Das, A; Ray, SK and Banik, NL (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull., 87: 10-20.
Steimle, A; Autenrieth, IB and Frick, JS (2016). Structure and function: Lipid a modifications in commensals and pathogens. Int. J. Med. Microbiol., 306: 290-301.
Vangroenweghe, F; Duchateau, L and Burvenich, C (2020). J-5 Escherichia coli vaccination does not influence severity of an Escherichia coli intramammary challenge in primiparous cows. J. Dairy Sci., 103: 6692-6697.
Vangroenweghe, F; Lamote, I and Burvenich, C (2005). Physiology of the periparturient period and its relation to severity of clinical mastitis. Domest. Anim. Endocrinol., 29: 283-293.
Vitenberga-Verza, Z; Pilmane, M; Šerstņova, K; Melderis, I; Gontar, Ł; Kochański, M; Drutowska, A; Maróti, G and Prieto-Simón, B (2022). Identification of inflam-matory and regulatory cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-producing cells in the milk of dairy cows with subclinical and clinical mastitis. Pathogens. 11: 372.
Waller, KP; Colditz, IG; Lun, S and Östensson, K (2003). Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Res. J. Vet. Sci., 74: 31-36.
Wenz, J; Barrington, G; Garry, F; Ellis, R and Magnuson, R (2006). Escherichia coli isolates’ serotypes, genotypes, and virulence genes and clinical coliform mastitis severity. J. Dairy Sci., 89: 3408-3412.