Molecular evaluation of Pasteurella multocida in livestock, characterization of virulence genes, and pathogenic potential of the retrieved isolates in Iran

Document Type : Full paper (Original article)

Authors

1 Ph.D. Student in Microbiology, Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran

2 Microbiology Department, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

3 Department of Biology, Zand Institute of Higher Education, Shiraz, Iran

4 Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

5 Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran

Abstract

Background: Pasteurellosis remains one of the most economically important diseases in Asia. Aims: The present study aimed to isolate Pasteurella multocida from cattle, sheep, and goats, perform molecular identification and capsular typing, evaluate the presence of selected virulence genes, examine pathogenicity using minimum infectious dose (MID) assay, and determine antimicrobial susceptibility. Methods: The study was performed on 600 samples collected from ailing sheep, goats and cattle. Identification of P. multocida isolates using standard biochemical tests and kmt1 gene amplification, molecular capsular typing, and identification of 14 virulence genes were determined by PCR method. The pathogenicity of each isolate was assessed by injecting a minimum infectious dose (9 × 106 CFU/ml) of the isolate suspension into Balb/C mice. The susceptibility of isolates for 9 antibiotics was investigated using the disk diffusion method according to CLSI criteria. Results: A total number of 80 isolates were identified as P. multocida from 38 sheep, 28 goats and 14 cattle. Type A was the most prevalent capsular type (62.5%), while capsular type B was not detected. Among the virulence genes, exbD (97.5%), plpB (90%), pmHAS (82.5%), exbB (80%), and toxA (80%) were the most frequently observed. hsf2 was the only adhesion gene in cattle. MID results showed that 62 isolates infected mice. Conclusion: Our results indicate that the presence of a greater number of virulence factors does not correlate with increased pathogenicity. Pathogenesis of toxA gene is mostly dependent on the host and this gene alone cannot cause disease in sheep, goats and cattle. Among the studied antibiotics, enrofloxacin was preferred for the treatment of pasteurellosis.

Keywords

Main Subjects


Bowles, RE; Pahoff, JL; Smith, BN and Blackall, PJ (2000). Ribotype diversity of porcine Pasteurella multocida from Australia. Aust. Vet. J., 78: 630-635. https://doi.org/10. 1111/j.1751-0813.2000.tb11940.x.
Cao, X; Gu, L; Gao, Z; Fan, W; Zhang, Q; Sheng, J; Zhang, Y and Sun, Y (2024). Pathogenicity and genomic characteristics analysis of Pasteurella multocida serotype A isolated from argali hybrid Sheep. Microorganisms. 12: e1072. https://doi.org/10.3390/microorganisms12061072.
CLSI (2018). Performance standards for antimicrobial susceptibility testing. 28th Edn., CLSI Supplement. M100. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
Dabo, SM; Taylor, JD and Confer, AW (2007). Pasteurella multocida and bovine respiratory disease. Anim. Health Res. Rev., 8: 129-150. https://doi.org/10.1017/S146625230 7001399.
D’Amico, F; Messina, D; Casalino, G; Schiavitto, M; Bove, A; Romito, D; D’Onghia, FP; Camarda, A and Circella, E (2024). Characterisation of Pasteurella multocida strains from different lesions in rabbits. Animals. 14: 156. https://doi.org/10.3390/ani1411156.
Devi, LB; Bora, DP; Das, SD; Sharma, RK; Mukherjee, S and Hazarika, RA (2018). Virulence gene profiling of porcine Pasteurella multocida isolates of Assam. Vet. World. 11: 348-354. https://doi.org/10.14202/vetworld. 2018.348-354.
Duan, R; Lyu, D; Qin, S; Liang, J; Gu, W; Duan, Q; Wu, W; Tang, D; Han, H; Zheng, X; Xi, J; Bukai, A; Lu, X; Zhang, P; Zhang, D; Xiao, M; Jing, H and Wang, X (2024). Pasteurella multocida strains of a novel capsular serotype and lethal to marmota himalayana on Qinghai-Tibet plateau in China. Int. J. Med. Microbiol., 314: 1-9. https://doi.org/10.1016/j.ijmm.2024.151597.
Ferreira, TSP; Felizardo, MR; Gobbi, DDSD; Moreno, M and Moreno, AM (2015). Antimicrobial resistance and virulence gene profiles in P. multocida strains isolated from cats. Braz. J. Microbiol., 46: 271-277. https://doi.org/10. 1590/S1517-838246120140084.
Furian, TQ; Borges, KA; Laviniki, V; Rocha, SLDS; Almeida, CND; Nascimento, VPD; Salle, CTP and Moraes, HLDS (2016). Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine. Braz. J. Microbiol., 47: 210-216. https://doi.org/ 10.1016/j.bjm.2015.11.014.
Furian, TQ; Borges, KA; Rocha, SLS; Rodrigues, EE; Nascimento, VP; Salle, CTP and Moraes, HLS (2013). Detection of virulence-associated genes of Pasteurella multocida isolated from cases of fowl cholera by multiplex-PCR. Pesqui. Vet. Bras., 33: 177-182. https://doi.org/10. 1590/S0100-736X2013000200007.
Gao, X; Xiao, J; Qin, H; Cao, Z and Wang, H (2016). Impact of meteorological factors on the prevalence of porcine pasteurellosis in the southcentral of mainland china. Prev. Vet. Med., 125: 78-81. https://doi.org/10.1016/ j.prevetmed.2016.01.002.
Gharibi, D; Hajikolaei, MRH; Ghorbanpour, M and Barzegar, SK (2017). Virulence gene profiles of Pasteurella multocida strains isolated from cattle and buffalo. Vet. Arhiv., 87: 677-690. https://doi.org/10.24099/ vet.arhiv.160727.
Harper, M; Boyce, JD and Adler, B (2006). Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol. Lett., 265: 1-10. https://doi.org/10.1111/j.1574-6968.2006.00442.x.
Hatfaludi, T; Al-Hasani, K; Boyce, JD and Adler, B (2010). Outer membrane proteins of Pasteurella multocida. Vet. Microbiol., 144: 1-17. https://doi.org/10.1016/j.vetmic. 2010.01.027.
He, F; Yin, Z; Wu, C; Xia, Y; Wu, M; Li, P; Zhang, H; Yin, Y; Li, N; Zhu, G and Ren, W (2019). L-serine lowers the inflammatory responses during Pasteurella multocida infection. Infect. Immun., 87: e00677-19. https://doi.org/10. 1128/IAI.00677-19.
Jabbari, AR; Banihashemi, SR; Valadan, D and Tadayon, K (2014). Molecular identification and capsular typing of Pasteurella multocida isolates from sheep pneumonia in Iran. Int. J. Mol. Cell Med., 2: 417-423.
Jamali, H; Rezagholipour, M; Fallah, S; Dadrasnia, SCA; Velappan, RD; Wei, K and Ismail, S (2014). Prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from bovine respiratory infection. Vet. J., 202: 381-383. https://doi.org/10.1016/j.tvjl.2014.07.024.
Khamesipour, F; Momtaz, H and Mamoreh, MA (2014). Occurrence of virulence factors and antimicrobial resistance in Pasteurella multocida strains isolated from slaughter cattle in Iran. Front Microbiol., 5: Article 536. https://doi.org/10.3389/fmicb.2014.00536.
Li, Z; Cheng, F; Lan, S; Guo, J; Liu, W; Li, X; Luo, Z; Zhang, M; Wu, J and Shi, Y (2018). Investigation of genetic diversity and epidemiological characteristics of Pasteurella multocida isolates from poultry in southwest China by population structure, multi-locus sequence typing and virulence-associated gene profile analysis. J. Vet. Med. Sci., 80: 921-929. https://doi.org/10.1292/jvms.18-0049.
Mahboob, S; Ullah, N; Ul Haque, MF; Rauf, W; Iqbal, M; Ali, A and Rahman, M (2023). Genomic characterization and comparative genomic analysis of HS-associated Pasteurella multocida serotype B:2 strains from Pakistan. BMC Genomics. 24: 546. https://doi.org/10.1186/s12864-023-09626-5.
May, BJ; Zhang, Q; Li, LL; Paustian, ML; Whittam, TS and Kapur, V (2001). Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. USA., 98: 3460-3465. https://doi.org/10.1073/pnas.051634598.
Merlin, C; Gardiner, G; Durand, S and Masters, M (2002). The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J. Bacteriol., 184: 5513-5517. https://doi. org/10.1128/JB.184.19.5513.5517.2002.
Mohammadpour, R; Champour, M; Tuteja, F and Mostafavi, E (2020). Zoonotic implications of camel diseases in Iran. Vet. Med. Sci., 6: 359-381. https://doi.org/ 10.1002/vms3.239.
Nanduri, B; Shack, LA; Burgess, SC and Lawrence, ML (2009). The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics. (Suppl. 2), 10: S4. https://doi.org/10.1186/1471-2164-10-S2-S4.
Nugroho, CMH; Kurnia, RS; Tarigan, S; Silaen, OSM; Triwidyaningtyas, S; Wibawan, IWT; Natalia, L; Khomeini Takdir, A and Soebandrio, A (2022). Screening and purification of NanB sialidase from Pasteurella multocida with activity in hydrolyzing sialic acid Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. Sci. Rep., 12: 13635. https://doi.org/10.1038/s41598-022-13635-x.
Peng, Z; Wang, X; Zhou, R; Chen, H; Wilson, BA and Wu, B (2019). Pasteurella multocida: genotypes and genomics. Microbiol. Mol. Biol. Rev., 83: 1-37. https://doi.org/10. 1128/MMBR.00014-19.
Petrocchi-Rilo, M; Gutierrez-Martin, CB; Perez-Fernandez, E; Vilaro, A; Fraile, L and Martinez-Martinez, S (2020). Antimicrobial resistance genes in porcine Pasteurella multocida are not associated with its antimicrobial susceptibility pattern. Antibiotics. 9: 614. https://doi.org/10.3390/antibiotics9090614.
Piorunek, M; Brajer-Luftmann, B and Walkowiak, J (2023). Pasteurella multocida infection in human. Pathogens. 12: 1210210. https://doi.org/10.3390/pathogens 12101210.
Sarangi, LN; Priyadarshini, A; Kumar, S; Thomas, P; Gupta, SK; Nagaleekar, VK and Singh, VP (2014). Virulence genotyping of Pasteurella multocida isolated from multiple hosts from India. Sci. World J., 2014: 814109. https://doi:10.1155/2014/814109.
Shayegh, J; Atashpaz, S and Hejazi, MS (2008). Virulence genes profile and typing of ovine Pasteurella multocida. Am. J. Anim. Vet. Adv., 3: 206-213. https://doi.org/10. 3923/ajava.2008.206.213.
Tabatabaei, M and Abdolahi, F (2023). Molecular evaluation of sheep and goat isolates of Pasteurella multocida and their antibiotic resistance. Vet. Res. Forum. 14: 481-487. https://doi.org/10.30466/vrf.2022.556438.3524.
Tahamtan, Y and Hayati, M (2014). Multidrug resistance of Pasteurella multocida ssp. isolates from sheep and goats in Iran. Res. J. Microbiol., 9: 51-58. https://doi.org/10.3923/ jm.2014.51.58.
Tahamtan, Y; Hayati, M and Namavari, MM (2014). Isolation and identification of Pasteurella multocida by PCR from sheep and goats in Fars province, Iran. Arch. Razi Inst., 69: 89-93. https://doi.org/10.7508/ari.2014.01. 013.
Tang, X; Zhao, Z; Hu, J; Wu, B; Cai, X; He, Q and Chen, H (2009). Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J. Clin. Microbiol., 47: 951-958. https://doi.org/10. 1128/JCM.02029-08.
Townsend, KM; Boyce, JD; Chung, JY; Frost, AJ and Adler, B (2001). Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol., 39: 924-929. https://doi.org/10.1128/JCM.39.3.924.
Vu-Khac, H; Trinh, TTH; Nguyen, TTG; Nguyen, XT and Nguyen, TT (2020). Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. Vet. World. 13: 896-904. https://doi.org/10.14202/vetworld. 2020.896-904.
Weiser, GC; DeLong, WJ; Paz, JL; Shafii, B; Price, WJ and Ward, AC (2003). Characterization of Pasteurella multocida associated with pneumonia in bighorn sheep. J. Wildl. Dis., 39: 536-544. https://doi.org/10.7589/0090-3558-39.3.536.
Wilson, BA and Ho, M (2013). Pasteurella multocida: from zoonosis to cellular microbiology. Clin. Microbiol. Rev., 26: 631-655. https://doi.org/10.1128/CMR.00024-13.
Zhao, X; Yang, F; Shen, H; Liao, Y; Zhu, D; Wang, M; Jia, R; Chen, S; Liu, M; Yang, Q; Wu, Y; Zhang, S; Huang, J; Ou, X; Mao, S; Gao, Q; Sun, D; Tian, B and Cheng, A (2022). Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. BMC Vet. Res., 53: 1-12. https://doi.org/10. 1186/s13567-022-01035-y.