IS1311 PCR-RFLP molecular epidemiological approach for genotyping of Mycobacterium avium subspecies paratuberculosis in sheep and goat milk

Document Type : Full paper (Original article)

Authors

1 MVSc Student, Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India

2 Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India

3 Ex-Scientist Central Institute of Research on Goat, Mukhdoon, Uttar Pradesh, 281122, India

4 Research Associate Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India, and Krishi Vigyan Kendra, Srinagar, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Jammu and Kashmir, Pincode 191111 India (current address)

Abstract

Background: Johne’s disease, a chronic wasting diarrheal illness, affecting ruminants, poses diagnostic challenges due to the prolonged incubation period of the agent. Aims: The present study aimed to assess the efficacy of the IS900 PCR protocol, for detecting the causative agent and identifying predominant Mycobacterium avium paratuberculosis (MAP) genotypes circulating among small ruminants in the Punjab (India) through the application of IS1311 PCR-RFLP using milk samples. Methods: A total of 205 milk samples, comprising 102 from goats and 103 from sheep, were tested for MAP DNA through IS900 PCR. Samples positive in IS900 PCR assay were subjected to IS1311 PCR assay, using M56 and M119 primers, followed by digestion of the products using Hinf I and Mse I restriction endonuclease enzymes. Results: Of the 205 samples, 37 (16 sheep and 21 goats) tested positive. The IS1311 RFLP analysis of all positive samples exhibited a restriction pattern (67, 218, and 323 bp) corresponding to the Bison type MAP Strain. Conclusion: Identification of a single predominant RFLP type (Bison) in both sheep and goats underscores the potential interspecies transmission and endemic co-circulation of Bison type MAP. These findings emphasize the need for further studies at regional and national levels, offering valuable insights for the development of comprehensive, monitoring and surveillance programs.

Keywords

Main Subjects


Anzabi, Y and Hanifian, S (2012). Detection of Mycobacterium avium subspecies paratuberculosis in pasteurized milk by IS900 PCR and culture method. Afr. J. Microbiol. Res., 6: 1453-1456.
Ayele, WY; Machácková, M and Pavlik, I (2018). The transmission and impact of paratuberculosis infection in domestic and wild ruminants. Vet. Med., 46: 205-224.
Beard, PM; Daniels, MJ; Henderson, D; Pirie, A; Rudge, K; Buxton, D; Rhind, S; Greig, A; Hutchings, MR; Mckendrick, I; Stevenson, K and Sharp, JM (2001). Paratuberculosis infection of nonruminant wildlife in Scotland. J. Clin. Microbiol., 39: 1517-1521.
Clark, DLJr; Koziczkowski, JJ; Radcliff, RP; Carlson, RA and Ellingson, JL (2008). Detection of Mycobacterium avium subspecies paratuberculosis: comparing fecal culture versus serum enzyme-linked immunosorbent assay and direct fecal polymerase chain reaction. J. Dairy Sci., 91: 2620-2627.
Dimareli-Malli, Z (2010). Detection of Mycobacterium avium subsp. paratuberculosis in milk from clinically affected sheep and goats. Int. J. Appl. Res. Vet. Med., 8: 44-50.
Dimareli-Malli, Z and Sarris, K (2001). Comparison of DNA probe test and cultivation methods for detection of Mycobacterium avium subsp paratuberculosis in caprine and ovine feces. Aust. Vet. J., 79: 47-50.
Dixit, M; Filia, G; Singh, SV and Islam, MRU (2023). Molecular detection and typing of Mycobacterium avium subspecies paratuberculosis from fecal samples of small ruminants. Ind. J. Vet. Sci. Biotechnol., 19: 12-15.
Djonne, B; Jensen, MR; Grant, IR and Holstad, G (2003). Detection by immunomagnetic PCR of Mycobacterium avium subsp. paratuberculosis in milk from dairy goats in Norway. Vet. Microbiol., 92: 135-143.
Donaghy, J; Johnston, J and Rowe, MT (2011). Detection of Mycobacterium avium ssp. paratuberculosis in cheese, milk powder and milk using IS900 and f57 -based qPCR assays. J. Appl. Microbiol., 110: 479-489.
Douarre, PE; Cashman, W; Buckley, JF; Coffey, A and O’Mahony, JM (2012). High resolution melting PCR to differentiate Mycobacterium avium subsp. paratuberculosis “cattle type” and “sheep type”. J. Microbiol. Methods. 88: 172-174.
Englund, S (2003). IS900/ERIC-PCR as a tool to distinguish Mycobacterium avium subsp. paratuberculosis from closely related mycobacteria. Vet. Microbiol., 96: 277-287.
Englund, S; Bölske, G; Ballagi-Pordany, A and Johansson, KE (2001). Detection of Mycobacterium avium subsp. paratuberculosis in tissue samples by single, fluorescent and nested PCR based on the IS900 gene. Vet. Microbiol., 81: 257-271.
Englund, S; Bölske, G and Johansson, KE (2002). An IS900-like sequence found in Mycobacterium sp. other than Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol. Lett., 209: 267-271.
Gardner, IA; Nielsen, SS; Whittington, RJ; Collins, MT; Bakker, D; Harris, B; Sreevatsan, S; Lombard, JE; Sweeney, R; Smith, DR; Gavalchin, J and Eda, S (2011). Consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis in ruminants. Prev. Vet. Med., 101: 18-34.
Giese, SB and Ahrens, P (2000). Detection of Mycobacterium avium paratuberculosis in milk from clinically affected cows by PCR and culture. Vet. Microbiol., 20: 291-297.
Gill, CO; Saucier, L and Meadus, WJ (2011). Mycobacterium avium subsp. paratuberculosis in dairy products, meat, and drinking water. J. Food Prot., 74: 480-499.
Gonda, MG; Chang, YM; Shook, GE; Collins, MT and Kirkpatrick, BW (2007). Effect of Mycobacterium paratuberculosis infection on production, reproduction, and health traits in US Holsteins. Prev. Vet. Med., 80: 103-119.
Harris, NB and Barletta, RG (2001). Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clin. Microbiol. Rev., 14: 489-512. doi: 10.1128/CMR.14.3.489-512.2001.
Hutchings, MR; Stevenson, K; Greig, A; Davidson, RS; Marion, G and Judge, J (2010). Infection of non-ruminant wildlife by Mycobacterium avium subsp. paratuberculosis. In: Behr, MA and Collins, DM (Eds.), Paratuberculosis; organism, disease, control. CAB International Cambridge. PP: 188-200.
Jungersen, G; Mikkelsen, H and Grell, SN (2012). Use of the Johnin PPD interferon-gamma assay in control of bovine paratuberculosis. Vet. Immunol. Immunopathol., 148: 48-54. doi: 10.1016/j.vetimm.2011.05.010.
Karuppusamy, S; Mutharia, L; Kelton, D; Plattner, B; Mallikarjunappa, S; Karrow, N and Kirby, G (2021). Detection of Mycobacterium avium subspecies paratuberculosis (MAP) microorganisms using antigenic MAP cell envelope proteins. Front. Vet. Sci., 8: 615029. https://doi.org/10.3389/fvets.2021.615029.
Kaur, P; Filia, G; Singh, SV; Patil, PK; Ravi Kumar, GVPPS and Sandhu, KS (2011). Molecular epidemiology of Mycobacterium avium subspecies paratuberculosis: IS900 PCR identification and IS1311 polymorphism analysis from ruminants in the Punjab region of India. Comp. Immunol. Microbiol. Infect. Dis., 34: 163-169. https://doi.org/10.1016/j.cimid.2010.09.002.
Kaur, P; Filia, G; Singh, SV; Patil, PK and Sandhu, KS (2010). Molecular detection and typing of Mycobacterium avium subspecies paratuberculosis from milk samples of dairy animals. Trop. Anim. Health Prod., 42: 1031-1035. https://doi.org/10.1007/s11250-009-9521-6.
Khan, FA; Chaudhry, ZI; Ali, MI; Khan, S; Mumtaz, N and Ahmed, I (2010). Detection of Mycobacterium avium subsp. paratuberculosis in tissue samples of cattle and buffaloes. Trop. Anim. Health Prod., 42: 633-638. doi: 10.1007/s11250-009-9467-8.
Kumar, P; Singh, SV; Bhatiya, AK; Sevilla, I; Singh, AV; Whittington, RJ; Juste, RA; Gupta, VK; Singh, PK; Sohal, JS and Vihan, VS (2007). Juvenile capri-paratuberculosis in India; incidence and characterization by six diagnostic tests. Small Rumin. Res., 73: 45-53.
Laga, AC; Milner, DAJr and Granter, SR (2014). Utility of acid-fast staining for detection of mycobacteria in cutaneous granulomatous tissue reactions. Am. J. Clin. Pathol., 141: 584-586. https://doi.org/10.1309/AJCPNM3J9 TOIBRSK.
Logar, K; Kopinč, R; Bandelj, P; Starič, J; Lapanje, A and Ocepek, M (2012). Evaluation of combined high-efficiency DNA extraction and real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in subclinically infected dairy cattle: Comparison with faecal culture, milk real-time PCR, and milk ELISA. BMC. Vet. Res., 8: 49. https://doi.org/10.1186/1746-6148-8-49.
Lybeck, KR; Storset, AK; Djonne, B; Valheim, M and Olsen, I (2011). Faecal shedding detected earlier than immune responses in goats naturally infected with Mycobacterium avium subsp. paratuberculosis. Res. Vet. Sci., 91: 32-39.
Machackova-Kopecna, M; Bartoš, M; Straka, MB; Ludvík, V; Svastova, P; Álvarez, J; Lamka, J; Trcka, I; Treml, F; Parmova, I and Pavlik, I (2005). Paratuberculosis and avian tuberculosis infections in one red deer farm studied by IS900 and IS901 RFLP analysis. Vet. Microbiol., 105: 261-268.
Manning, EJ and Collins, MT (2001). Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis. Rev. Sci. Tech. OIE., 20: 133-150. doi: 10.20506/rst.20.1.1275.
Marsh, I; Whittington, R and Cousins, D (1999). PCR-restriction endonuclease analysis for identification and strain typing of Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium based on polymorphisms in IS1311. Mol. Cell. Probes. 13: 115-126.
Millar, D; Ford, J and Sanderson, J (1996). IS900 PCR to detect Mycobacterium paratuberculosis in retail supplies of whole pasteurized cow’s milk in England and Wales. Appl. Environ. Microbiol., 62: 3446-3452.
Millar, DS; Withey, SJ; Tizard, ML; Ford, JG and Hermon-Taylor, J (1995). Solid-phase hybridization capture of low-abundance target DNA sequences: Application to the polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacteriumavium subsp. silvaticum. Anal. Biochem., 226: 325-330.
Nebbia, P; Robino, P; Zoppi, S and Meneghi, DD (2006). Detection and excretion pattern of Mycobacterium avium subspecies paratuberculosis in milk of asymptomatic sheep and goats by Nested-PCR. Small Rumin. Res., 66: 116-120.
Nielsen, SS; Kolmos, B and Christoffersen, AB (2004). Comparison of contamination and growth of Mycobacterium avium subsp. paratuberculosis on two different media. J. Appl. Microbiol., 96: 149-153.
Pillai, SR and Jayarao, BM (2002). Application of IS900 PCR for detection of Mycobacterium avium subsp. paratuberculosis directly from raw milk. J. Dairy Sci., 85: 1052-1057.
Raveendran, R; Priya, PM; Koshy, J; Krishnan, NG and Vijayakumar, K (2011). Detection of Mycobacterium avium subsp. paratuberculosis in asymptomatic bovines by IS900 polymerase chain reaction. Vet. World. 4: 248-249.
Richardson, E and More, S (2009). Direct and indirect effects of Johne’s disease on farm and animal productivity in an Irish dairy herd. Ir. Vet. J., 62: 526-532. https://doi.org/ 10.1186/2046-0481-62-8-526.
Schrader, C; Schielke, A; Ellerbroek, L and Johne, R (2012). PCR inhibitors - occurrence, properties and removal. J. Appl. Microbiol., 113: 1014-1026. https://doi. org/10.1111/j.1365-2672.2012.05384.x.
Semret, M; Turenne, CY and Behr, MA (2006). Insertion sequence IS900 revisited. J. Clin. Microbiol., 44: 1081-1083. https://doi.org/10.1128/JCM.44.3.1081-1083.2006.
Sevilla, I; Singh, SV; Garrido, JM; Aduriz, G; Rodríguez, S; Geijo, MV; Whittington, RJ; Saunders, V; Whitlock, RH and Juste, RA (2005). Molecular typing of Mycobacterium avium subspecies paratuberculosis strains from different hosts and regions. Rev. Sci. Tech., 24: 1061-1066.
Sharma, G; Singh, SV; Sevilla, I; Singh, AV; Whittington, RJ; Juste, RA; Kumar, S; Gupta, VK; Singh, PK; Sohal, JS and Vihan, VS (2008). Evaluation of indigenous milk ELISA with m-culture and m-PCR for the diagnosis of bovine Johne’s disease (BJD) in lactating Indian dairy cattle. Res. Vet. Sci., 84: 30-37.
Singh, AV; Chauhan, DS; Singh, A; Singh, PK; Sohal, JS and Singh, SV (2015). Application of IS1311 locus 2 PCR-REA assay for the specific detection of ‘Bison type’ Mycobacterium avium subspecies paratuberculosis isolates of Indian origin. Ind. J. Med. Res., 141: 55-61. https://doi.org/10.4103/0971-5916.154497.
Singh, PK; Singh, SV; Kumar, H; Sohal, JS and Singh, AV (2010). Diagnostic application of IS900 PCR using blood as a source sample for the detection of Mycobacterium avium subspecies paratuberculosis in early and subclinical cases of caprine paratuberculosis. Vet. Med. Int., 2010: 748621. https://doi.org/10.4061/2010/748621.
Singh, SV; Singh, AV; Singh, R; Misra, S; Shukla, N; Singh, PK; Sohal, JS; Sharma, S; Kumar, H; Patil, PK and Sandhu, KS (2007). Real-time estimates of seroprevalence of Johne’s disease in farmers and farm goatherds in North India, using indigenous ELISA kit and fecal culture. Ind. J. Anim. Sci., 77: 1074-1079.
Singh, SV; Sohal, JS; Singh, PK and Singh, AV (2009). Genotype profiles of Mycobacterium avium subspecies paratuberculosis isolates recovered from animals, commercial milk and human beings in North India. Int. J. Inf. Dis., 13: 221-227.
Singh, SV and Vihan, VS (2004). Detection of Mycobacterium avium subspecies paratuberculosis in goat milk. Small Rumin. Res., 54: 231-235.
Speer, C; Scott, MC; Bannantine, JP; Waters, WR; Mori, Y; Whitlock, RH and Eda, S (2006). A novel enzyme-linked immunosorbent assay for diagnosis of Mycobacterium avium subsp. paratuberculosis infections (Johne’s Disease) in cattle. Clin. Vaccine Immunol., 13: 535-540. doi: 10.1128/CVI.13.5.535-540.2006.
Stabel, JR; Bradner, L; Robbe-Austerman, S and Beitz, DC (2014). Clinical disease and stage of lactation influence shedding of Mycobacterium avium subspecies paratuberculosis into milk and colostrum of naturally infected dairy cows. J. Dairy Sci., 97: 6296-6304. https://doi.org/10.3168/jds.2014-8209.
Sukumar, B; Gunaseelan, L; Porteen, K and Prabu, K (2014). Goat milk as a non-invasive sample for confirmation of Mycobacterium avium subspecies paratuberculosis by IS900 PCR. J. Adv. Vet. Anim. Res., 1: 136-139.
Szteyn, J; Liedtke, K; Wiszniewska-Łaszczych, A; Wysok, B and Wojtacka, J (2020). Isolation and molecular typing of Mycobacterium avium subsp. paratuberculosis from faeces of dairy cows. Pol. J. Vet. Sci., 23: 415-422.
Thorel, MF; Krichevsky, M and Lévy-frebault, V (1990). Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov; Mycobacterium avium subsp. paratuberculosis subsp. nov; and Mycobacterium avium
subsp. silvaticum subsp. nov. Int. J. Syst. Bacteriol., 40: 254-260.
Traveria, GE; Zumárraga, MJ; Etchechoury, I; Romano, MI; Cataldi, AA; Pinedo, MF; Pavlik, I; Pribylova, R and Romero, JR (2014). First identification of Mycobacterium avium paratuberculosis sheep strain in Argentina. Braz. J. Microbiol., 44: 897-899.
Van Soolingen, D; Hermans, PWM; de Haas, PEW; Soll, DR and van Embden, JDA (1991). Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: Evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol., 29: 2578-2586.
Whipple, DL; Callihan, DR and Jarnagin, JL (1991). Cultivation of Mycobacterium paratuberculosis from bovine fecal specimens and a suggested standardized procedure. J. Vet. Diagn. Invest., 3: 368-373.
Whittington, RJ; Marsh, I; Choy, E and Cousins, D (1998). Polymorphisms in IS1311, an insertion sequence common to Mycobacterium avium and M. avium subsp. paratuberculosis, can be used to distinguish between and within these species. Mol. Cell. Probes. 12: 349-358.
Whittington, RJ and Sergeant, ES (2001). Progress towards understanding the spread, detection and control of Mycobacterium avium subsp paratuberculosis in animal populations. Aust. Vet. J., 79: 267-278.
Yadav, D; Singh, SV; Singh, AV; Sevilla, I; Juste, RA; Singh, PK and Sohal, JS (2008). Pathogenic ‘Bison-type’ Mycobacterium avium subspecies paratuberculosis genotype characterized from riverine buffalo (Bubalus bubalis) in North India. Comp. Immunol. Microbiol. Infect. Dis., 31: 73-87.