Al-Talib, H; Yean, CY; Al-Khateeb, A; Hassan, H; Singh, KKB; Al-Jashamy, K and Ravichandran, M (2009). A pentaplex PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus and Panton-Valentine Leucocidin. BMC Microbiol., 9: 113.
Asli, A; Brouillette, E; Ster, C; Ghinet, MG; Brzezinski, R; Lacasse, P; Jacques, M and Malouin, F (2017). Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PloS One. 12: e0176988.
Awad, A; Ramadan, H; Nasr, S; Ateya, A and Atwa, S (2017). Genetic characterization, antimicrobial resistance patterns and virulence determinants of Staphylococcus aureus isolated form bovine mastitis. Pak. J. Biol. Sci., 20: 298-305.
Bradley, AJ; Leach, KA; Breen, JE; Green, LE and Green, MJ (2007). Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Rec., 160: 253-258.
Brakstad, OG; Aasbakk, K and Maeland, JA (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol., 30: 1654-1660.
Ciftci, A; Findik, A; Onuk, EE and Savasan, S (2009). Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Braz. J. Microbiol., 40: 254-261.
CLSI (2015). Performance standards for antimicrobial disk susceptibility tests. Approved standard. 12th Edn., Vol. M02-A12, Clinical and Laboratory Standards Institute, Wayne, PA.
Dingwell, RT; Leslie, KE; Schukken, YH; Sargeant, JM and Timms, LL (2003). Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. Can. Vet. J., 44: 413-415.
Dorgham, SM; Hamza, DA; Khairy, EA and Hedia, RH (2013). Methicillin-resistant Staphylococci in mastitic animals in Egypt. Glob. Vet., 11: 714-720.
El-Ashker, M; Gwida, M; Monecke, S; Ehricht, R; Elsayed, M; El-Gohary, F; Reißig, A; Müller, E; Paul, A; Igbinosa, EO; Beshiru, A and Maurischat, S (2020). Microarray-based detection of resistance genes in coagulase-negative Staphylococci isolated from cattle and buffalo with mastitis in Egypt. Trop. Anim. Health Prod., 52: 3855-3862.
El-Jakee, JK; Aref, NE; Gomaa, A; El-Hariri, MD; Galal, HM; Omar, SA and Samir, A (2013). Emerging of coagulase negative Staphylococci as a cause of mastitis in dairy animals: an environmental hazard. Int. J. Vet. Sci. Med., 1: 74-78.
Elhaig, MM and Selim, A (2015). Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt. Trop. Anim. Health Prod., 47: 271-276.
Elsayed, MS; El-Bagoury, AEM and Dawoud, MA (2015). Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and water buffaloes from different farms of Sadat City in Egypt. Vet. World. 8: 1051-1058.
Gillespie, B; Headrick, S; Boonyayatra, S and Oliver, S (2009). Prevalence and persistence of coagulase-negative Staphylococcus species in three dairy research herds. Vet. Microbiol., 134: 65-72.
Hoque, M; Das, Z; Rahman, A; Haider, M and Islam, M (2018). Molecular characterization of Staphylococcus aureus strains in bovine mastitis milk in Bangladesh. Int. J. Vet. Sci. Med., 6: 53-60.
Hussein, HA; El-Razik, K; Gomaa, AM; Elbayoumy, MK; Abdelrahman, KA and Hosein, HI (2018). Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle. Vet. World. 11: 34-41.
Ibrahim, ES; Dorgham, SM; Mansour, AS; Abdalhamed, AM and Khalaf, DD (2022). Genotypic characterization of mecA gene and antibiogram profile of coagulase-negative Staphylococci in subclinical mastitic cows. Vet. World. 15: 2186-2191.
Jayarao, B; Pillai, S; Sawant, A; Wolfgang, D and Hegde, N (2004). Guidelines for monitoring bulk tank milk somatic cell and bacterial counts. J. Dairy Sci., 87: 3561-3573.
Kalorey, DR; Shanmugam, Y; Kurkure, NV; Chousalkar, KK and Barbuddhe, SB (2007). PCR-based detection of genes encoding virulence determinants in Staphylococcus aureus from bovine subclinical mastitis cases. J. Vet. Sci., 8: 151-154.
Klibi, A; Maaroufi, A; Torres, C and Jouini, A (2018). Detection and characterization of methicillin-resistant and susceptible coagulase-negative Staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antimicrob. Agents. 52: 930-935.
Lee, YJ and Lee, YJ (2022). Characterization of biofilm producing coagulase-negative Staphylococci isolated from bulk tank milk. Vet. Sci., 9: 430.
Li, T; Lu, H; Wang, X; Gao, Q; Dai, Y; Shang, J and Li, M (2017). Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front. Cell. Infect. Microbiol., 7: 127.
Lim, SK; Nam, HM; Jang, GC; Lee, HS; Jung, SC and Kwak, HS (2012). The first detection of methicillin-resistant Staphylococcus aureus ST398 in pigs in Korea. Vet. Microbiol., 155: 88-92.
Murakami, K; Minamide, W; Wada, K; Nakamura, E; Teraoka, H and Watanabe, S (1991). Identification of methicillin-resistant strains of Staphylococci by polymerase chain reaction. J. Clin. Microbiol., 29: 2240-2244.
Nigam, R (2015). Incidence and pattern of antibiotic resistance of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and buffaloes. Asian J. Anim. Sci., 9: 100-109.
Pitkälä, A; Haveri, M; Pyörälä, S; Myllys, V and Honkanen-Buzalski, T (2004). Bovine mastitis in Finland 2001—prevalence, distribution of bacteria, and anti-microbial resistance. J. Dairy Sci., 87: 2433-2441.
Raheel, I; Mohammed, AN and Mohamed, AA (2023). The efficacy of bacteriocins against biofilm-producing bacteria causing bovine clinical mastitis in dairy farms: A new strategy. Curr. Microbiol., 80: 229.
Raspanti, CG; Bonetto, CC; Vissio, C; Pellegrino, MS; Reinoso, EB; Dieser, SA; Bogni, CI; Larriestra, AJ and Odierno, LM (2016). Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina. Rev. Argent. Microbiol., 48: 50-56.
Shah, MS; Qureshi, S; Kashoo, Z; Farooq, S; Wani, SA; Hussain, MI; Banday, M; Khan, AA; Gull, B and Habib, A (2019). Methicillin resistance genes and in vitro biofilm formation among Staphylococcus aureus isolates from bovine mastitis in India. Comp. Immunol. Microbiol. Infect. Dis., 64: 117-124.
Spanu, T; Sanguinetti, M; Ciccaglione, D; D’Inzeo, T; Romano, L; Leone, F and Fadda, G (2003). Use of the VITEK 2 system for rapid identification of clinical isolates of Staphylococci from bloodstream infections. J. Clin.
Microbiol., 41: 4259-4263.
Srednik, ME; Tremblay, YDN; Labrie, J; Archambault, M; Jacques, M; Fernández Cirelli, A and Gentilini, ER (2017). Biofilm formation and antimicrobial resistance genes of coagulase-negative Staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiol. Lett., 1: 364.
Tremblay, YD; Lamarche, D; Chever, P; Haine, D; Messier, S and Jacques, M (2013). Characterization of the ability of coagulase-negative Staphylococci isolated from the milk of Canadian farms to form biofilms. J. Dairy Sci., 96: 234-246.
Wahdan, A; Ezzat, M; Youssef, F; Munier, M; Ahmed, S and Hashem, M (2022). Phylogenetic tracking of Ica-locus in MRSA from different sources at Ismailia city, Egypt. Adv. Anim. Vet. Sci., 10: 2124-2132.
Wang, D; Wang, Z; Yan, Z; Wu, J; Ali, T; Li, J; Lv, Y and Han, B (2015). Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect. Genet. Evol., 31: 9-16.
Wyder, AB; Boss, R; Naskova, J; Kaufmann, T; Steiner, A and Graber, HU (2011). Streptococcus spp. and related bacteria: their identification and their pathogenic potential for chronic mastitis–a molecular approach. Res. Vet. Sci., 91: 349-357.