Abd EL-Dayem, GHA; Ramadan, AH and Ali, HS (2021). The role of hatcheries, hatching eggs and one day old chicks in dissemination of beta lactam antibiotic resistance Pseudomonas aeruginosa (ESBL). Egypt. J. Ani. Health. PP: 80-99.
Abd El-Ghany, WA (2021). Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet. World. 14: 2155-2159.
Abd El-Tawab, AA; El-Hofy, FI; Khater, DF and Al-Adl, MM (2014). PCR detection and gene sequence of Pseudomonas Aeruginosa isolated from broiler chickens. Benha Vet. Med. J., 27: 449-455.
Abdelraheem, WM; Abdelkader, AE; Mohamed, ES and Mohammed, MS (2020). Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene. 23: 100646.
Al-Ahmadi, GJ and Roodsari, RZ (2016). Fast and specific detection of Pseudomonas aeruginosa from other Pseudomonas species by PCR. Ann. Burn. Fire Disasters., 29: 264-267.
Algammal, AM; Eidaroos, NH; Alfifi, KJ; Alatawy, M; Al-Harbi, AI; Alanazi, YF; Ghobashy, MO; Khafagy, AR; Esawy, AM; El-Sadda, SS; Hetta, HF and El-Tarabili, RM (2023). and antibiotic resistancopr L gene sequencing, resistance patterns, virulence genes, quorum snsing e genes of XDR Pseudomonas aeruginosa isolated from broiler chickens. Infect. Drug Resist., 853-867. doi: 10.2147/ IDR.S401473.
Amirmozafari, N; Fallah Mehrabadi, J and Habibi, A (2016). Association of the exotoxin A and exoenzyme S with antimicrobial resistance in Pseudomonas aeruginosa strains. Arch. Iran. Med., 19: 353-358.
Anuj, SN; Whiley, DM; Kidd, TJ; Bell, SC; Wainwright, CE; Nissen, MD and Sloots, TP (2009). Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagn. Microbiol. Infect. Dis., 63: 127-131.
Badr, JM; El Saidy, FR and Abdelfattah, AA (2020). Emergence of multi-drug resistant Pseudomonas aeruginosa in broiler chicks. Int. J. Microbiol. Biotechnol., 5: 41-47.
Bahador, N; Shoja, S; Faridi, F; Dozandeh-Mobarrez, B; Qeshmi, FI; Javadpour, S and Mokhtary, S (2019). Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran. J. Microbiol., 11: 25-30.
Bakheet, AA and Torra, DE (2020). Detection of Pseudomonas aeruginosa in dead chicken embryo with reference to pathological changes and virulence genes. Alex. J. Vet. Sci., 65: 81-89.
Bäuerle, T; Fischer, A; Speck, T and Bechinger, C (2018). Self-organization of active particles by quorum sensing rules. Nat. Commun., 9: 1-8.
Bratu, S; Gupta, J and Quale, J (2006). Expression of the las and rhl quorum-sensing systems in clinical isolates of Pseudomonas aeruginosa does not correlate with efflux pump expression or antimicrobial resistance. J. Antimicrob. Chemother., 58: 1250-1253.
Chakraborty, S; Dutta, TK; Roychoudhury, P; Samanta, I; Kalai, S and Bandyopadhyay, S (2020). Molecular characterization of biofilm-producing Pseudomonas aeruginosa isolated from healthy pigs and chicken in India. Indian J. Ani. Res., 54: 1400-1407.
Christensen, GD; Simpson, WA; Bisno, AL and Beachey, EH (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun., 37: 318-326.
Dong, N; Liu, C; Hu, Y; Lu, J; Zeng, Y; Chen, G and Zhang, R (2022). Emergence of an extensive drug resistant Pseudomonas aeruginosa strain of chicken origin carrying bla IMP-45, tet (X6), and tmexCD3-toprJ3 on an IncpRBL16 plasmid. Microbiol. Spect., 10(6): e02283-22.
Donnik, IM; Krivonogova, AS; Isaeva, AG; Shkuratova, IA; Moiseeva, KV and Musikhina, NB (2020). Special features of Pseudomonas aeruginosa strains in animal and poultry farms in the regions with various levels of man-made pollution. Agron. Res., 18: 2365-2373.
El-Demerdash, AS and Bakry, NR (2020). Evaluation of the synergistic effect of amikacin with cefotaxime against Pseudomonas aeruginosa and its biofilm genes expression. Gene Exp. Pheno. Traits. 121-138.
Elsayed, M; Ammar, A; Al Shehri, ZS; Abd-El Rahman, H and Abd-El Rahman, NA (2016). Virulence repertoire of Pseudomonas aeruginosa from some poultry farms with detection of resistance to various antimicrobials and plant extracts. Mol. Cell. Biol., 62: 124-132.
Eraky, RD; Abd El-Ghany, WA and Soliman, KM (2020). Studies on Pseudomonas aeruginosa infection in hatcheries and chicken. J. Hel. Vet. Med. Soc., 71: 1953-1962.
Fadhil, L; Al-Marzoqi, AH; Zahraa, MA and Shalan, AA (2016). Molecular and phenotypic study of virulence genes in a pathogenic strain of Pseudomonas aeruginosa isolated from various clinical origins by PCR: Profiles of genes and toxins. RJPBCS., 7: 590-598.
Finnan, S; Morrissey, JP; O’gara, F and Boyd, EF (2004). Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol., 42: 5783-5792.
Francis, VI; Stevenson, EC and Porter, SL (2017). Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 364: fnx104.
Gajdács, M; Baráth, Z; Kárpáti, K; Szabó, D; Usai, D; Zanetti, S and Donadu, MG (2021). No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 10: 1134.
Ghadaksaz, A; Fooladi, AAI; Hosseini, HM and Amin, M (2015). The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J. Appl. Biomed., 13: 61-68.
Gholami, A; Majidpour, A; Talebi-Taher, M; Boustanshenas, M and Adabi, M (2016). PCR-based assay for the rapid and precise distinction of Pseudomonas aeruginosa from other Pseudomonas species recovered from burns patients. JPMH., 57: E81.
Haque, S; Ahmad, F; Dar, SA; Jawed, A; Mandal, RK; Wahid, M; Lohani, M; Khan, S; Singh, V and Akhter, N (2018). Developments in strategies for Quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb. Pathog., 121: 293-302.
Hassan, WH; Ibrahim, AMK; Shany, SAS and Salam, HSH (2020). Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt. J. Adv. Vet. Ani. Res., 7: 452–463.doi: 10.5455/javar.2020.g441.
Jing, C; Liu, C; Liu, Y; Feng, R; Cao, R; Guan, Z and Yang, G (2021). Antibodies against Pseudomonas aeruginosa alkaline protease directly enhance disruption of neutrophil extracellular traps mediated by this enzyme. Front. Immunol., 12: 649-654.
Karami, P; Khaledi, A; Mashoof, RY; Yaghoobi, MH; Karami, M; Dastan, D and Alikhani, MY (2020). The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports. 18: 100561.
Khan, MSA; Ahmad, I; Sajid, M and Cameotra, SS (2014). Current and emergent control strategies for medical biofilms. Antibiofilm Agents: From Diagnosis to Treatment and Prevention. 8: 117-159.
Khattab, MA; Nour, MS and El-Sheshtawy, NM (2015). Genetic identification of Pseudomonas aeruginosa virulence genes among different isolates. J. Microb. Biochem. Technol., 7: 274-277.
Langendonk, RF; Neill, DR and Fothergill, JL (2021). The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies. Front. Cell. Infect. Microbiol., 11: 665759. doi: 10.3389/fcimb.
Latifi, A; Foglino, M; Tanaka, K; Williams, P and Lazdunski, A (1996). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol., 21: 1137-1146.
Li, M; Guo, N; Song, G; Huang, Y; Wang, L; Zhang, Y and Wang, T (2023). Type II toxin-antitoxin systems in Pseudomonas aeruginosa. Toxins. 15: 164. doi: 10.3390/toxins15020164.
Magiorakos, AP; Srinivasan, A; Carey, RB; Carmeli, Y; Falagas, ME; Giske, CG; Harbarth, S; Hindler, JF; Kahlmeter, G; Olsson-Liljequist, B; Paterson, DL; Rice, LB; Stelling, J; Struelens, MJ; Vatopoulos, A; Weber, JT and Monnet, DL (2012). Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 18: 268-281.
Matar, GM; Ramlawi, F; Hijazi, N; Khneisser, I and Abdelnoor, AM (2002). Transcription levels of Pseudomonas aeruginosa exotoxin A gene and severity of symptoms in patients with otitis externa. Curr. Microbiol., 45: 350-354.
Meliani, A and Bensoltane, A (2015). Review of Pseudomonas attachment and biofilm formation in food industry. Poult. Fish. Wildl. Sci., 3: 2-7.
Michalska, M and Wolf, P (2015). Pseudomonas exotoxin A: optimized by evolution for effective killing. Front. Microbiol., 6: 963.
Mohamed, HM; Alnasser, SM; Abd-Elhafeez, HH; Alotaibi, M; Batiha, GES and Younis, W (2022). Detection of β-lactamase resistance and biofilm genes in
pseudomonas species isolated from chickens. Microorganisms. 10: 1975.
https://doi.org/10.3390/ microorganisms10101975.
Morales, PA; Aguirre, JS; Troncoso, MR and Figueroa, GO (2016). Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. LWT, 73: 609-614.
Noomi, BS (2018). Detection of virulence factors of Pseudomonas aeruginosa in different animals by using bacteriological and molecular methods. Iraqi J. Vet. Sci., 32: 205-210.
Pang, Z; Raudonis, R; Glick, BR; Lin, TJ and Cheng, Z (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 37: 177-192.
Poulsen, BE; Yang, R; Clatworthy, AE; White, T; Osmulski, SJ; Li, L and Hung, DT (2019). Defining the core essential genome of Pseudomonas aeruginosa. PNAS., 116: 10072-10080. doi: 10.1073/pnas.1900570116.
Qin, X; Emerson, J; Stapp, J; Stapp, L; Abe, P and Burns, JL (2003). Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J. Clin. Microbiol., 41: 4312-4317.
Quinn, PJ; Markey, BK; Carter, ME; Donnelly, WJC and Leonard, FC (2002). Veterinary microbiology and microbial disease. Blackwell Science., 14: 113-118.
https://sid.ir/paper/657266/en.
Rodrigue, A; Quentin, Y; Lazdunski, A; Méjean, V and Foglino, M (2000). Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol., 8: 498-504. doi: 10.1016/S0966-842X(00)01833-3.
Roulová, N; Mot’ková, P; Brožková, I and Pejchalová, M (2022). Antibiotic resistance of Pseudomonas aeruginosa isolated from hospital wastewater in the Czech Republic. J. Water Health. 20: 692-701.
Shahat, HS; Mohamed, HM; Abd Al-Azeem, MW and Nasef, SA (2019). Molecular detection of some virulence genes in Pseudomonas aeruginosa isolated from chicken embryos and broilers with regard to disinfectant resistance. Int. J. Vet. Sci., 2: 52-70.
Shukla, S and Mishra, P (2015). Pseudomonas aeruginosa infection in broiler chicks in Jabalpur. Int. J. Ext. Res., 6: 37-39.
Skindersoe, ME; Alhede, M; Phipps, R; Yang, L; Jensen, PO; Rasmussen, TB; Bjarnsholt, T; Tolker-Nielsen, T; Høiby, N and Givskov, M (2008). Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 52: 3648-3663.
Smith, RS and Iglewski, BH (2003). Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. JCI., 112: 1460-1465. doi: 10.1172/JCI20364.
Sonbol, F; El-Banna, T; Elgaml, A and Aboelsuod, KM (2022). Impact of quorum sensing system on virulence factors production in Pseudomonas aeruginosa. J. Pure Appl. Microbiol., 16: 1226-1238.
Spilker, T; Coenye, T; Vandamme, P and LiPuma, JJ (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microbiol., 42: 2074-2079.
Steindler, L; Bertani, I; De Sordi, L; Schwager, S; Eberl, L and Venturi, V (2009). LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl. Environ. Microbiol., 75: 5131-5140.
Tartor, YH and El-Naenaeey, EY (2016). RT-PCR detection
of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa. Mol. Cell. Biol., 62: 56-62.
Thi, MTT; Wibowo, D and Rehm, BH (2020). Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci., 21: 8671.
Williams, JJ; Halvorsen, EM; Dwyer, EM; DiFazio, RM and Hergenrother, PJ (2011). Toxin-antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett., 322: 41-50.
Winstanley, C; Kaye, SB; Neal, TJ; Chilton, HJ; Miksch, S; Hart, CA and the Microbiology Ophthalmic Group (2005). Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J. Med. Microbiol., 54: 519-526.
Wood, TL and Wood, TK (2016). The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiol. Open. 5: 499-511. doi: 10.1002/mbo3.346.
Xu, J; Moore, JE; Murphy, PG; Millar, BC and Elborn, JS (2004). Early detection of Pseudomonas aeruginosa-comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann. Clin. Antimicrob., 3: 1-5.
Yan, S and Wu, G (2019). Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa? Front. Microbiol., 10: 1582. doi: 10.3389/fmicb.2019.01582.
Yekani, M; Memar, MY; Alizadeh, N; Safaei, N and Ghotaslou, R (2017). Antibiotic resistance patterns of biofilm-forming Pseudomonas aeruginosa isolates from mechanically ventilated patients. Int. J. Sci. Study. 5: 84-88.
Zhao, X; Yu, Z and Ding, T (2020). Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 8: 425.
Zhou, J; Li, S; Li, H; Jin, Y; Bai, F; Cheng, Z and Wu, W (2021). Identification of a toxin-antitoxin system that contributes to persister formation by reducing NAD in pseudomonas aeruginosa. Microorganisms. 9: 753. doi: 10.3390/microorganisms9040753.