Evidence-based identification and characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical mastitis in dairy buffaloes of Pakistan

Document Type : Full paper (Original article)

Authors

1 Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan

2 Ph.D. Student in Veterinary Medicine, Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan

3 MSc Student in Veterinary Medicine, Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan

Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA), affecting livestock and human beings, has become a global public health hazard with economic consequences. Aims: The current study was designed to investigate the prevailing MRSA-associated subclinical mastitis and associated risk factors in dairy buffaloes. The study also highlighted the genetic variations and in silico-based proteomic differences among MRSA isolates. Methods: Out of 516 milk samples, 45.93% (237/516) were found positive for subclinical mastitis, while the prevalence of S. aureus was recorded 56.12%. The methicillin resistance in S. aureus isolates was evaluated by oxacillin disc diffusion test and molecular identification of the mecA gene. Results: The results revealed a phenotypic and molecular prevalence of MRSA at 45.11% and 18.79%, respectively. The risk factor analysis revealed that among various assumed risk factors, parity, milking hygiene, milker care during milking, milk yield, housing system, and floor type were significantly associated with subclinical mastitis in buffaloes. The sequencing and phylogenetic analysis showed no significant genetic variations among study isolates and depicted a high similarity with isolates from Africa, USA, India, Italy, Turkey, and Iran. The in-silico protein analysis showed that all sequences had the same protein motifs resembling penicillin protein 2a except Buff-13, whose protein structure resembles alpha-catenin-like protein hmp-1. Conclusion: The current study was the first report of the genotypic characterization and in silico protein analysis of MRSA from dairy buffaloes in Pakistan. The result highlighted the importance of antimicrobial resistance (AMR) and development of control strategies against MRSA infections.

Keywords

Main Subjects


Abdeen, EE; Mousa, WS; Abdel-Tawab, AA; El-Faramawy, R and Abo-Shama, UH (2021). Phenotypic, genotypic and antibiogram among Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J., 41: 289-293. doi: 10.29261/pakvetj/2021.008.
Abdul, M; Malik, R; Ijaz, M; Islam, A; Shahid, A; Farooqi, H and Hussain, K (2017). The prevalence and associated risk factors of Coa gene (coagulase positive Staphylococcus aureus) from bovine milk Kafkas. Univ. Vet. Fak. Derg., 23: 809-815. doi: 10.9775/kvfd.2017. 17910.
Ahmed, A; Ijaz, M; Khan, JA and Anjum, AA (2022). Molecular characterization and therapeutic insights into biofilm positive Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J., 42: 584-590.
Aklilu, E and Ying, CH (2020). First mecC and mecA positive livestock-associated methicillin resistant Staphylococcus aureus (MecC MRSA/LA-MRSA) from dairy cattle in Malaysia. Microorganisms. 8: 147. https://doi.org/10.3390/ microorganisms8020147.
Ali, MA; Ahmad, MD; Muhammad, K and Anjum, AA (2011). Prevalence of sub clinical mastitis in dairy buffaloes of Punjab, Pakistan Okara. J. Anim. Plant Sci., 21: 477-480.
Ali, M; Irtiqa, A; Mahrukh, F and Tooba, A (2018). Factors leading to acquired bacterial resistance due to antibiotics in Pakistan. Curr. Trends Biotechnol. Microbiol., 1: 1-7. doi: 10.32474/CTBM.2018.01.000101.
Altaf, M; Ijaz, M; Iqbal, MK; Rehman, A; Avais, M; Ghaffar, A and Ayyub, RM (2020). Molecular characterization of methicillin resistant Staphylococcus aureus (MRSA) and associated risk factors with the occurrence of goat mastitis. Pak. Vet. J., 40: 1-6. doi: 10.29261/pakvetj/2019.079.
Aqib, AI; Ijaz, M; Anjum, AA; Malik, MAR; Mehmood, K; Farooqi, SH and Hussain, K (2017). Antibiotic susceptibilities and prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine milk in Pakistan. Acta Trop., 176: 168-172. https://doi.org/ 10.1016/j.actatropica.2017.08.008.
Aqib, AI; Ijaz, M; Farooqi, SH; Ahmed, R; Shoaib, M; Ali, MM; Mehmood, K and Zhang, H (2018). Emerging discrepancies in conventional and molecular epidemiology of methicillin resistant Staphylococcus aureus isolated from bovine milk. Microb. Pathog., 116: 38-43. https://doi.org/ 10.1016/j.micpath.2018.01.005.
Awad, A; Ramadan, H; Nasr, S; Ateya, A and Atwa, S (2017). Genetic characterization, antimicrobial resistance patterns and virulence determinants of Staphylococcus aureus isolated form bovine mastitis. Pak. J. Biol. Sci., 20: 298-305. https://dx.doi.org/10.3923/pjbs.2017.298.305.
Ballhausen, B; Kriegeskorte, A; Schleimer, N; Peters, G and Becker, K (2014). The mecA homolog mecC confers resistance against β-Lactams in Staphylococcus aureus irrespective of the genetic strain background. Antimicrob. Agents Chemother., 58: 3791-3798. https://doi.org/ 10.1128/AAC.02731-13.
Catry, B; Van Duijkeren, E; Pomba, MC; Greko, C; Moreno, MA; Pyörälä, S; Ruzauskas, M; Sanders, P; Threlfall, EJ; Ungemach, F; Törneke, K; Munoz-Madero, C and Torren-Edo, J (2010). Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiol Infect., 138: 626-644. https://doi.org/ 10.1017/S0950268810000014.
CLSI (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th Edition.
Cuny, C; Wieler, LH and Witte, W (2015). Livestock-associated MRSA: The impact on humans. Antibiotics. 4: 521-543. https://doi.org/10.3390/antibiotics4040521.
Fagiolo, A and Lai, O (2007). Mastitis in buffalo. Ital. J. Anim. Sci., 6: 200-206. https://doi.org/10.4081/ijas.2007. s2.200.
Galdiero, E; Liguori, G; D’Isanto, M; Damiano, N and Sommese, L (2003). Distribution of mecA among methicillin-resistant clinical staphylococcal strains isolated at hospitals in Naples, Italy. Eur. J. Epidemiol., 18: 139-145.
Gao, J; Ferreri, M; Yu, F; Liu, X; Chen, L; Su, J and Han, B (2012). Molecular types and antibiotic resistance of Staphylococcus aureus isolates from bovine mastitis in a single herd in China. Vet. J., 192: 550-552. https://doi.org/10.1016/j.tvjl.2011.08.030.
Ghumman, NZ; Ijaz, M; Ahmed, A; Javed, MU; Muzammil, I and Raza, A (2022). Evaluation of methicillin resistance in field isolates of Staphylococcus aureus: An emerging issue of indigenous bovine breeds. Pakistan J. Zool., 55: 1-12. https://dx.doi.org/10.17582/ journal.pjz/20220316080346.
Gitau, GK; Bundi, RM; Vanleeuwen, J and Mulei, CM (2014). Mastitogenic bacteria isolated from dairy cows in Kenya and their antimicrobial sensitivity. J. S. Afr. Vet. Assoc., 85: 1-8. https://hdl.handle.net/10520/EJC149579.
Gleeson, D; Flynn, J and Brien, BO (2018). Effect of pre-milking teat disinfection on new mastitis infection rates of dairy cows. Ir. Vet. J., 71: 1-8. https://doi.org/10.1186/ s13620-018-0122-4.
Guimarães, FF; Manzi, MP; Joaquim, SF; Richini-Pereira, VB and Langoni, H (2017). Short communication: Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. J. Dairy Sci., 100: 726-730. https://doi.org/10.3168/jds.2016-11700.
Guo, D; Liu, Y; Han, C; Chen, Z and Ye, X (2018). Phenotypic and molecular characteristics of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolated from pigs: implication for livestock-association markers and vaccine strategies. Infect. Drug Resist., 11: 1299-1307. https://doi.org/10.2147%2FIDR.S173624.
Haran, KP; Godden, SM; Boxrud, D; Jawahir, S; Bender, JB and Sreevatsan, S (2012). Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J. Clin. Microbiol., 50: 688-695. https://doi.org/10.1128/JCM. 05214-11.
Harris, SR; Feil, EJ; Holden, MTG; Quail, MA; Nickerson, EK; Chantratita, N; Gardete, S; Tavares, A; Day, N; Lindsay, JA; Edgeworth, JD; de Lencastre, H; Parkhill, J; Peacock, SJ and Bentley, SD (2010). Evolution of MRSA during hospital transmission and intercontinental spread. Science. 327: 469-474. https://doi.org/10.1126/ science.1182395.
Hasan, MA; Khan, MA; Sharmin, T; Hasan Mazumder, MH and Chowdhury, AS (2016). Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis. Gene. 575: 132-143. https://doi.org/ 10.1016/j.gene.2015.08.044.
Javed, MU; Ijaz, M; Durrani, AZ and Ali, MM (2023). On-farm epidemiology, virulence profiling, and molecular characterization of methicillin-resistant Staphylococcus aureus at goat farms. Microb Pathog., 185: 106456. https://doi.org/10.1016/j.micpath.2023.106456.
Javed, MU; Ijaz, M; Fatima, Z; Anjum, AA; Aqib, AI; Ali, MM; Rehman, A; Ahmed, A and Ghaffar, A (2021). Frequency and antimicrobial susceptibility of methicillin and vancomycin-resistant Staphylococcus aureus from bovine milk. Pak. Vet. J., 41: 463-468. doi: 10.29261/ pakvetj/2021.060.
Ji, Y; Xiao, F; Zhu, W; Liu, S; Feng, X; Sun, C; Lei, L; Dong, J; Khan, A; Han, W and Gu, J (2020). LysGH15 effectively control murine mastitis caused by Staphylococcus aureus. Pak. Vet. J., 40: 519-522. doi: 10.29261/pakvetj/2020.056.
Juhász-Kaszanyitzky, E; Jánosi, S; Somogyi, P; Dán, A; van der Graaf-van Bloois, L; van Duijkeren, E and Wagenaar, JA (2007). MRSA transmission between cows and humans. Emerg. Infect. Dis., 13: 630-632. https://doi.org/10.3201%2Feid1304.060833.
Köck, R; Loth, B; Köksal, M; Schulte-Wülwer, J; Harlizius, J and Friedrich, AW (2012). Persistence of nasal colonization with livestock-associated methicillin-resistant Staphylococcus aureus in pig farmers after holidays from pig exposure. Appl. Environ. Microbiol. 78: 4046-4047. https://doi.org/10.1128/AEM.00212-12.
Lakhundi, S and Zhang, K (2018). Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 31: e00020-18. https://doi.org/10.1128/CMR.00020-18.
Lim, SK; Nam, HM; Jang, GC; Lee, HS; Jung, SC and Kim, TS (2013). Transmission and persistence of methicillin-resistant Staphylococcus aureus in milk, environment, and workers in dairy cattle farms. Foodborne Path. Dis., 10: 731-736. https://doi.org/10.1089/fpd.2012. 1436.
Locatelli, C; Piepers, S; De Vliegher, S; Barberio, A; Supré, K; Scaccabarozzi, L; Pisoni, G; Bronzo, V; Haesebrouck, F and Moroni, P (2013). Effect on quarter milk somatic cell count and antimicrobial susceptibility of Staphylococcus rostri causing intramammary infection in dairy water buffaloes. J. Dairy Sci., 96: 3799-3805. https://doi.org/10.3168/jds.2012-6275.
Muhammad, G; Athar, M; Shakoor, A; Khan, MZ; Rehman, F and Ahmad, MT (1995). Surf field mastitis test: An inexpensive new tool for evaluation of wholesomeness of fresh milk. Pak. J. Food Sci., 5: 91-93.
Muzammil, I; Ijaz, M; Saleem, MH and Ali, MM (2022). Drug repurposing strategy: An emerging approach to identify potential therapeutics for treatment of bovine mastitis. Microb. Pathog., 171: 105691.
Muzammil, I; Saleem, MI; Aqib, AI; Ashar, A; Mahfooz, SA; ur Rahman, S; Shoaib, M; Naseer, MA; Sohrani, IK and Ahmad, J (2021). Emergence of pathogenic strains of Staphylococcus aureus in goat milk and their comparative response to antibiotics. Pak. J. Zool., https://dx.doi.org/10.17582/journal.pjz/20191024181008.
Nururrozi, A; Indarjulianto, S; Purnamaningsih, H and Mada, UG (2020). The benefits of teat dipping as prevention of mastitis. J. Livest. Sci. Prod., 4: 231-249. http://dx.doi.org/10.31002/jalspro.v4i1.2796.
Nyman, AK; Persson Waller, K; Bennedsgaard, TW; Larsen, T and Emanuelson, U (2014). Associations of udder-health indicators with cow factors and with intramammary infection in dairy cows. J. Dairy Sci., 97: 5459-5473. https://doi.org/10.3168/jds.2013-7885.
Oltenacu, P and Broom, D (2010). The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf., 19: 39-49. https://doi.org/10.1017/ S0962728600002220.
Pu, W; Su, Y; Li, J; Li, C; Yang, Z; Deng, H and Ni, C (2014). High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PloS One. 9: e88134. https://doi.org/10.1371/journal.pone.0088134.
Rainard, P and Riollet, C (2006). Innate immunity of the bovine mammary gland. Vet. Res., 37: 369-400. https://dx. doi.org/10.1051/vetres:2006007.
Rasheed, H; Ijaz, M; Ahmed, A; Javed, MU; Shah, SFA and Anwaar, F (2023). Discrepancies between phenotypic and genotypic identification methods of antibiotic resistant genes harboring Staphylococcus aureus. Microb Pathog., 184: 106342. https://doi.org/10.1016/j.micpath.2023. 106342.
Rinsky, JL; Nadimpalli, M; Wing, S; Hall, D; Baron, D; Price, LB; Larsen, J; Stegger, M; Stewart, J and Heaney, CD (2013). Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PloS One. 8: e67641. https://doi.org/ 10.1371/journal.pone.0067641.
Sabir, MJ; Ijaz, M; Ahmed, A; Rasheed, H; Javed, MU and Anwaar, F (2023). First report on genotypic estimation of MRSA load in udder of nomadic sheep flocks affected with subclinical mastitis in Pakistan. Res. Vet. Sci., 10: 105107. https://doi.org/10.1016/j.rvsc.2023.105107.
Shah, MS; Qureshi, S; Kashoo, Z; Farooq, S; Wani, SA; Hussain, MI; Banday, MS; Khan, AA; Gull, B; Habib, A; Khan, SM and Dar, BA (2019). Methicillin resistance genes and in vitro biofilm formation among Staphylococcus aureus isolates from bovine mastitis in India. Comp. Immunol. Microbiol. Infect. Dis., 64: 117-124. https://doi.org/10.1016/j.cimid.2019.02.009.
Siddiky, M and Faruque, M (2018). Buffaloes for dairying in south Asia: potential, challenges and way forward. SAARC J. Agric., 15: 227-239. https://doi.org/10.3329/sja.v15i2. 35167.
Spohr, M; Rau, J; Friedrich, A; Klittich, G; Fetsch, A; Guerra, B; Hammerl, JA and Tenhagen, BA (2011). Methicillin-resistant Staphylococcus aureus (MRSA) in three dairy herds in southwest Germany. Zoonoses Public Health. 8: 252-261. https://doi.org/10.1111/j.1863-2378. 2010.01344.x.
Taponen, S; Liski, E; Heikkilä, AM and Pyörälä, S (2017). Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci., 100: 493-503. https://doi. org/10.3168/jds.2016-11465.
Tassew, A; Aki, A and Legesse, K (2017). Isolation, identification and antimicrobial resistance profile of Staphylococcus aureus and occurrence of methicillin resistant S. aureus isolated from mastitic lactating cows in and around Assosa Town, Benishangul Gumuz Region, Ethiopia. J. Dairy Vet. Anim. Res., 6: 23-32.
Tenhagen, BA; Alt, K; Pfefferkorn, B; Wiehle, L; Käsbohrer, A and Fetsch, A (2018). Short communication: Methicillin-resistant Staphylococcus aureus in conventional and organic dairy herds in Germany. J. Dairy Sci., 101: 3380-3386. https://doi.org/10.
3168/jds.2017-12939.
Thrusfield, MV (2007). Veterinary epidemiology. 4th Edn., Oxford, Blackwell Science; Ames, Iowa, John Willey and Sons. P: 861.
Turutoglu, H; Hasoksuz, M and Ozturk, D (2009). Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Vet. Res. Commun., 33: 945-956. doi: 10.1007/s11259-009-9313-5.
Wang, D; Wang, Z; Yan, Z; Wu, J; Ali, T; Li, J; Lv, Y and Han, B (2015). Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect. Genet. Evol. 31: 9-16. https://doi.org/10.1016/j.meegid.2014.12.039.