Vancomycin-variable enterococci in sheep and cattle isolates and whole-genome sequencing analysis of isolates harboring vanM and vanB genes

Document Type : Full paper (Original article)


Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ankara University, 06110, Altindag, Ankara, Turkey


Background: Vancomycin resistance encoded by the vanA/B/M genes in enterococci is clinically important because of the transmission of these genes between bacteria. While vancomycin resistance is determined by detecting only vanA and vanB genes by routine analyses, failure to detect vanM resistance causes vancomycin resistance to be overlooked, and clinically appropriate treatment cannot be provided. Aims: The study aimed to examine the presence of vanM-positive enterococcal isolates in Ankara, Turkey, and to have detailed information about them with sequence analyses. Methods: Caecal samples were collected from sheep and cattle during slaughter at different slaughterhouses in Ankara, Turkey. Enterococci isolates were identified, confirmed, and analyzed for the presence of vanA/B/M genes. Antibiotic resistance profiles of isolates were determined by the broth microdilution method. A whole genome sequence analysis of the isolates harboring the vanM and vanB genes was performed. Results: 13.7% of enterococcal isolates were determined as Enterococcus faecium and Enterococcus faecalis. 15% of these isolates contained vanB, and 40% were vanM-positive. S98b and C32 isolates were determined to contain 16 CRISPR-Cas elements. 80% of the enterococci isolates were resistant to nitrofurantoin and 15% to ciprofloxacin. The first vanM-positive vancomycin-variable enterococci (VVE) isolates from food-producing animals were identified, and the S98b strain has been assigned to Genbank with the accession number CP104083.1. Conclusion: Therefore, new studies are needed to facilitate the identification of vanM-resistant enterococci and VVE strains.


Main Subjects

Ahmed, MO and Baptiste, KE (2018). Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist., 24: 590-606.
Alcock, BP; Raphenya, AR; Lau, TT; Tsang, KK; Bouchard, M; Edalatmand, A; Huynh, W; Nguyen, AV; Cheng, AA; Liu, S; Min, SY; Miroshnichenko, A; Tran, H; Werfalli, RE; Nasir, JA; Oloni, M; Speicher, DJ; Florescu, A; Singh, B; Faltyn, M; Koutoucheva, AH; Sharma, AN; Bordeleau, E; Pawlowski, AC; Zubyk, HL; Dooley, D; Griffiths, E; Maguire, F; Winsor, GL; Beiko, RG; Brinkman, FSL; Hsiao, WWL; Domselaar, GV and Mcarthur, GA (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res., 48(D1): D517-D525.
Alduhaidhawi, AHM; Alhuchaimi, SN; Al-Mayah, TA; Al-Ouqaili, MT; Alkafaas, SS; Muthupandian, S and Saki, M (2022). Prevalence of CRISPR-Cas Systems and their possible association with antibiotic resistance in Enterococcus faecalis and Enterococcus faecium collected from hospital wastewater. Infect. Drug Resist., 15: 1143-1154.
Anahtar, MN; Bramante, JT; Xu, J; Desrosiers, LA; Paer, JM; Rosenberg, ES; Pierce, VM and Kwon, DS (2022). Prediction of antimicrobial resistance in clinical Enterococcus faecium isolates using a rules-based analysis of whole-genome sequences. Antimicrob. Agents Chemother., 66: e01196-21.
Bhatty, M; Camacho, MI; Gonzalez-Rivera, C; Frank, KL; Dale, JL; Manias, DA; Dunny, GM and Christie, PJ (2017). PrgU: a suppressor of sex pheromone toxicity in Enterococcus faecalis. Mol. Microbiol., 103: 398-412.
Bolger, AM; Lohse, M and Usadel, B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform. 30: 2114-2120.
Bortolaia, V; Kaas, RS; Ruppe, E; Roberts, MC; Schwarz, S; Cattoir, V; Philippon, A; Allesoe, RL; Rebelo, AR; Florensa, AF; Fagelhauer, L; Chakraborty, T; Neumann, B; Werner, G; Bender, JK; Stingl, K; Nguyen, M; Coppens, J; Xavier, BB; Malhotra-Kumar, S; Westh, H; Pinholt, M; Anjum, MF; Duggett, NA; Kempf, I; Nykasenoja, S; Olkkola, S; Wieczorek, K; Amaro, A; Clemente, L; Mossong, J; Losch, S; Ragimbeau, C; Lund, O and Aarestrup, FM (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother., 75: 3491-3500.
Calvez S; Prevost, H and Drider, D (2008). Relative expression of genes involved in the resistance/sensitivity of Enterococcus faecalis JH2-2 to recombinant divercin RV41. Biotechnol. Lett., 30: 1795-1800.
Cattoir, V and Leclercq, R (2017). Resistance to macrolides, lincosamides, and streptogramins. In: Mayers, D; Sobel, J; Ouellette, M; Kaye, K and Marchaim, D (Eds.), Antimicrobial drug resistance. (2nd Edn.), New York, United States, Springer, Cham. PP: 269-280.
CDC (2019). Vancomycin-Resistant Enterococci (VRE), Antibiotic resistance threats in the United States, Atlanta, GA: U.S. Department of Health and Human Services.
Chen, C; Sun, J; Guo, Y; Lin, D; Guo, Q; Hu, F; Zhu, D; Xu, X and Wang, M (2015). High prevalence of vanM in vancomycin-resistant Enterococcus faecium isolates from Shanghai, China. Antimicrob. Agents Chemother., 59: 7795-7798.
Cheng, S; Mccleskey, FK; Gress, MJ; Petroziello, JM; Liu, R; Namdari, H; Beninga, K; Salmen, A and Delvecchio, VG (1997). A PCR assay for identification of Enterococcus faecium. J. Clin. Microbiol., 35: 1248-1250.
CLSI (2023). M100 performance standards for antimicrobial susceptibility testing. 33rd Edn.
Dallo, M; Patel, K and Hebert, AA (2023). Topical antibiotic treatment in dermatology. Antibiotics. 12: 188.
Daniel, WW and Cross, CL (2018). Biostatistics: a foundation for analysis in the health sciences. 10th Edn., Wiley Blackwell, New Jersey, United States. PP: 192-193.
De Carvalho, MP; Fernandes, MR; Sellera, FP; Lopes, R; Monte, DF; Hippolito, AG; Milanelo, L; Raso, TF and Lincopan, N (2020). International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound. Emerg. Dis., 67: 1804-1815.
Di Francesco, CE; Smoglica, C; Profeta, F; Farooq, M; Di Giannatale, E; Toscani, T and Marsilio, F (2021). Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Poult. Sci., 100: 101084.
Domig, KJ; Mayer, HK and Kneifel, W (2003). Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp.: 1. Media for isolation and enumeration. Int. J. Food Microbiol., 88: 147-164.
Ernst, CM and Peschel, A (2011). Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol. Microbiol., 80: 290-299.
EUCAST (The European Committee on Antimicrobial Susceptibility Testing) (2022a). EUCAST reading guide for broth microdilution. Version 4.0.
EUCAST (The European Committee on Antimicrobial Susceptibility Testing) (2022b). Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0.
EU Commission Implementing Decision (2020). 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU. Off. J. Eur. Union. L387/8.
Evers, S; Sahm, DF and Courvalin, P (1993). The vanB gene of vancomycin-resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala: D-Ala ligases and glycopeptide-resistance proteins VanA and VanC. Gene. 24: 143-144.
Fatoba, DO; Amoako, DG; Akebe, ALK; Ismail, A and Essack, SY (2022). Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet (M), Tet (L) and Erm (B) genes from chicken litter to agricultural soil in South Africa. J. Environ. Manage., 302: 114101.
Freitas, AR; Tedim, AP; Almeida-Santos, AC; Duarte, B; Elghaieb, H; Abbassi, MS; Hassen, A; Novais, C and Peixe, L (2022). High-resolution genotyping unveils identical ampicillin-resistant Enterococcus faecium strains in different sources and countries: A One Health approach. Microorganisms. 10: 632.
Gardiner, BJ; Stewardson, AJ; Abbott, IJ and Peleg, AY (2019). Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Aust. Prescr., 42: 14.
Gião, J; Leão, C; Albuquerque, T; Clemente, L and Amaro, A (2022). Antimicrobial susceptibility of Enterococcus isolates from cattle and pigs in portugal: Linezolid resistance genes optrA and poxtA. Antibiotics. 11: 615.
Grissa, I; Vergnaud, G and Pourcel, C (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res., (Suppl. 2), 35: W52-W57.
Gupta, SK; Pfeltz, RF; Wilkinson, BJ and Gustafson, JE (2022). Transcriptomic and metabolomic analysis of a fusidic acid-selected fusa mutant of Staphylococcus aureus. Antibiotics. 11: 1051.
Hammerum, AM; Justesen, US; Pinholt, M; Roer, L; Kaya, H; Worning, P; Nygaard, S; Kemp, M; Clausen, ME; Nielsen, KL; Samulioniene, J; Kjærsgaard, M; Østergaard, C; Coia, J; Søndergaard, TS; Gaini, S; Schønning, K; Westh, H; Hasman, H and Holzknecht, BJ (2019). Surveillance of vancomycin-resistant enterococci reveals shift in dominating clones and national spread of a vancomycin-variable vanA Enterococcus faecium ST1421-CT1134 clone, Denmark, 2015 to March 2019. Euro Surveill. 24: 1900503.
Handwerger, S; Perlman, DC; Altarac, D and Mcauliffe, V (1992). Concomitant high-level vancomycin and penicillin resistance in clinical isolates of enterococci. Clin. Infect. Dis., 14: 655-661.
Hashimoto, Y; Taniguchi, M; Uesaka, K; Nomura, T; Hirakawa, H; Tanimoto, K; Tamai, K; Ruan, G; Zhenfg, B and Tomita, H (2019). Novel multidrug-resistant enterococcal mobile linear plasmid pELF1 encoding vanA and vanM gene clusters from a Japanese vancomycin-resistant enterococci isolate. Front. Microbiol., 10: 2568.
Hullahalli, K; Rodrigues, M; Nguyen, UT and Palmer, K (2018). An attenuated CRISPR-Cas system in Enterococcus faecalis permits DNA acquisition. Mbio. 9: e00414-18.
Jiang, L (2020). Membrane vesicles as nano-weapons for combating E. faecium infection. Ph.D. Thesis, Utrecht University, Utrecht, the Netherlands. P: 81.
Jozefíková, A; Valček, A; Šoltys, K; Nováková, E and Bujdáková, H (2022). Persistence and multi-ward dissemination of vancomycin-resistant Enterococcus faecium ST17 clone in hospital settings in Slovakia 2017-2020. Int. J. Antimicrob. Agents. 59: 106561.
Kajfasz, JK; Mendoza, JE; Gaca, AO; Miller, JH; Koselny, KA; Giambiagi-Demarval, M; Wellington, M; Abranches, J and Lemos, JA (2012). The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect. Immun., 80: 2265-2275.
Kariyama, R; Mitsuhata, R; Chow, JW; Clewell, DB and Kumon, H (2000). Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. J. Clin. Microbiol., 38: 3092-3095.
Ke, D; Picard, FJ; Martineau, F; Ménard, C; Roy, PH; Ouellette, M and Bergeron, MG (1999). Development of a PCR assay for rapid detection of enterococci. J. Clin. Microbiol. 37: 3497-3503.
Krause, AL; Stinear, TP and Monk, IR (2022). Barriers to genetic manipulation of Enterococci: Current approaches and future directions. FEMS Microbiol. Rev., 46: 1-14.
Lebreton, F; Schaik, W; Mcguire, AM; Godfrey, P; Griggs, A; Mazumdar, V; Corander, J; Cheng, L; Saif, S; Young, S; Zeng, Q; Wortman, J; Birren, B; Willems, RJL; Earl, AM and Gilmore, MS (2013). Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio. 4: e00534-13.
Leclercq, R (1997). Enterococci acquire new kinds of resistance. Clin. Infect. Dis., 24: S80-S84.
Lee, EW; Huda, MN; Kuroda, T; Mizushima, T and Tsuchiya, T (2003). EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob. Agents Chemother., 47: 3733-3738.
Lee, TS; Pang, DA; Daley, JC; Pearson, S; Abraham, G and Coombs, W (2022). The changing molecular epidemiology of Enterococcus faecium harboring the van operon at a teaching hospital in Western Australia: A fifteen-year retrospective study. Int. J. Med. Microbiol., 312: 151546.
Li, Q; Chen, S; Zhu, K; Huang, X; Huang, Y; Shen, Z; Ding, S; Gu, D; Yang, Q; Sun, H; Hu, F; Wang, H; Cai, J; Ma, B; Zhang, R and Shen, J (2022). Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium. Nat. Commun., 13: 1-11.
Ma, X; Zhang, F; Bai, B; Lin, Z; Xu, G; Chen, Z; Sun, X; Zheng, J; Deng, Q and Yu, Z (2021). Linezolid resistance in Enterococcus faecalis associated with urinary tract infections of patients in a tertiary hospitals in China: Resistance mechanisms, virulence, and risk factors. Front. Public Health. 9: 570650.
Meining, W; Scheuring, J; Fischer, M and Weinkauf, S (2006). Cloning, purification, crystallization and preliminary crystallographic analysis of SecA from Enterococcus faecalis. Acta Cryst., F62: 583-585.
Nallapareddy, SR; Singh, KV and Murray, BE (2008). Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis. Infect. Immun., 76: 4120-4128.
Nasaj, M; Saeidi, Z; Asghari, B; Roshanaei, G and Arabestani, MR (2020). Identification of hemolysin encoding genes and their association with antimicrobial resistance pattern among clinical isolates of coagulase-negative Staphylococci. BMC Res. Notes. 13: 1-6.
Nishioka, T; Ogawa, W; Kuroda, T; Katsu, T and Tsuchiya, T (2009). Gene cloning and characterization of EfmA, a multidrug efflux pump, from Enterococcus faecium. Biol. Pharm. Bull., 32: 483-488.
Nomura, T; Hashimoto, Y; Kurushima, J; Hirakawa, H; Tanimoto, K; Zheng, B; Ruan, G; Xue, F; Liu, J; Hisatsune, J; Sugai, M and Tomita, H (2018). New colony multiplex PCR assays for the detection and discrimination of vancomycin-resistant enterococcal species. J. Microbiol. Methods. 145: 69-72.
Nunez, N; Derré-Bobillot, A; Gaubert, S; Herry, J; Deschamps, J; Wei, Y; Baranek, T; Si-Tahar, M; Briandet, R; Serror, P and Archambaud, C (2018). Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection. Sci. Rep., 8: 1-11.
Onaran, B; Göncüoğlu, M and Ormancı, FSB (2019). Antibiotic resistance profiles of vancomycin resistant enterococci in chicken meat samples. Ankara Univ. Vet. Fak. Derg., 66: 331-336.
Osei Sekyere, J; Govinden, U; Bester, LA and Essack, SY (2016). Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J. Appl. Microbiol., 121: 601-617.
Ota, Y; Furuhashi, K; Hayashi, W; Hirai, N; Ishikawa, J; Nagura, O; Yamanaka, K; Katahashi, K; Aoki, K; Nagano, N and Maekawa, M (2021). Daptomycin resistant Enterococcus faecalis has a mutation in liaX, which encodes a surface protein that inhibits the LiaFSR systems and cell membrane remodeling. J. Infect. Chemother., 27: 90-93.
Paganelli, FL; Willems, RJ and Leavis, HL (2012). Optimizing future treatment of enterococcal infections: attacking the biofilm? Trends Microbiol., 20: 40-49.
Palmer, KL and Gilmore, MS (2010). Multidrug-resistant enterococci lack CRISPR-cas. MBio. 1: e00227-10.
Patel, MP; Marcinkeviciene, J and Blanchard, JS (1998). Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric O2 conditions. FEMS Microbiol. Lett., 166: 155-163.
Peykov, S; Strateva, T and Dimov, S (2022). Design of species-specific PCR primers that target the aac (6′)-Ii gene for the rapid detection of Enterococcus faecium. Bacteria. 1: 183-190.
Qayyum, S; Sharma, D; Bisht, D and Khan, AU (2019). Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microb. Pathog., 126: 205-211.
Ramos, Y; Rocha, J; Hael, AL; Gestel, J; Vlamakis, H; Cywes-Bentley, C; Cubillos-Ruiz, JR; Pier, GB; Gilmore, MS; Kolter, R and Morales, DK (2019). PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLoS Pathog., 15: e1007571.
Riboldi, GP; Verli, H and Frazzon, J (2009). Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein. BMC Biochem., 10: 1-10.
Rodrigues, M; Mcbride, SW; Hullahalli, K; Palmer, KL and Duerkop, BA (2019). Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob. Agents Chemother., 63: e01454-19.
Salze, M; Muller, C; Bernay, B; Hartke, A; Clamens, T; Lesouhaitier, O and Rince, A (2020). Study of key RNA metabolism proteins in Enterococcus faecalis. RNA Biol., 17: 794-804.
Samad, MA; Sagor, S; Hossain, MS; Karim, R; Mahmud, MA; Sarker, SA; Shownaw, FA; Mia, Z; Card, RM; Agunos, A and Johanna, L (2022). High prevalence of vancomycin non-susceptible and multi-drug resistant enterococci in farmed animals and fresh retail meats in Bangladesh. Vet. Res. Commun., 46: 811-822.
Scholtzek, AD; Hanke, D; Eichhorn, I; Walther, B; Lubke-Becker, A; Duijkeren, E; Kock, R; Schwarz, S and Feßler, AT (2020). Heterogeneity of antimicrobial susceptibility testing results for sulfamethoxazole/ trimethoprim obtained from clinical equine Staphylococcus aureus isolates using different methods. Vet. Microbiol., 242: 108600.
Segawa, T; Johnson, CM; Berntsson, RPA and Dunny, GM (2021). Two ABC transport systems carry out peptide uptake in Enterococcus faecalis: Their roles in growth and in uptake of sex pheromones. Mol. Microbiol., 16: 459-469.
Singh, KV; Malathum, K and Murray, BE (2001). Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob. Agents Chemother., 45: 263-266.
Singh, KV; Weinstock, GM and Murray, BE (2002). An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother., 46: 1845-1850.
Sun, L; Qu, T; Wang, D; Chen, Y; Fu, Y; Yang, Q and Yu, Y (2019). Characterization of vanM carrying clinical Enterococcus isolates and diversity of the suppressed vanM gene cluster. Infect. Genet. Evol., 68: 145-152.
Taniguchi, H; Aramaki, H; Nikaido, Y; Mizuguchi, Y; Nakamura, M; Koga, T and Yoshida, S (1996). Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol. Lett., 144: 103-108.
Tran, TT; Munita, JM and Arias, CA (2015). Mechanisms of drug resistance: daptomycin resistance. Ann. NY Acad. Sci., 1354: 32-53.
Urusova, DV; Merriman, JA; Gupta, A; Chen, L; Mathema, B; Caparon, MG and Khader, SA (2022). Rifampin resistance mutations in the rpoB gene of Enterococcus faecalis impact host macrophage cytokine production. Cytokine. 151: 155788.
Van Tyne, D; Manson, AL; Huycke, MM; Karanicolas, J; Earl, AM and Gilmore, MS (2019). Impact of antibiotic treatment and host innate immune pressure on enterococcal adaptation in the human bloodstream. Sci. Transl. Med., 11: eaat8418.
Wagner, TM; Janice, J; Sivertsen, A; Sjogren, I; Sundsfjord, A and Hegstad, K (2021). Alternative vanHAX promoters and increased vanA-plasmid copy number resurrect silenced glycopeptide resistance in Enterococcus faecium. J. Antimicrob. Chemother., 76: 876-882.
Walsh, BJ; Costa, SS; Edmonds, KA; Trinidad, JC; Issoglio, FM; Brito, JA and Giedroc, DP (2022). Metabolic and structural insights into hydrogen sulfide mis-regulation in Enterococcus faecalis. Antioxidants. 11: 1607.
Wan, Y; Mills, E; Leung, RCY; Vieira, A; Zhi, X; Croucher, NJ; Woodford, N; Jauneikaite, E; Ellington, MJ and Sriskandan, S (2021). Alterations in chromosomal genes nfsA, nfsB, and ribE are associated with nitrofurantoin resistance in Escherichia coli from the United Kingdom. Microb. Genom., 7: 1-19.
Weaver, KE and Reddy, SG (2006). The recombination deficient Enterococcus faecalis UV202 strain is a recA mutant. Plasmid. 55: 164-168.
Xin, L; Hu, Z; Han, R; Xu, X; Wang, C; Li, D; Guo, Y and Hu, F (2022). Asp50Glu mutation in MurA result in fosfomycin resistance in Enterococcus faecium. J. Glob. Antimicrob. Resist., 30: 50-55.
Yan, MY; He, YH; Ruan, GJ; Xue, F; Zheng, B and Lv, Y (2022). The prevalence and molecular epidemiology of vancomycin-resistant Enterococcus (VRE) carriage in patients admitted to intensive care units in Beijing, China. J. Microbiol. Immunol. Infect., 56: 351-357.
Zaheer, R; Cook, SR; Barbieri, R; Goji, N; Cameron, A; Petkau, A; Polo, RO; Tymensen, L; Stamm, C; Song, J; Hannon, S; Jones, T; Church, D; Booker, CW; Amoako, K; Domselaar, GV; Read, RR and Mcallister, TA (2020). Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep., 10: 3937.
Zarzecka, U; Zakrzewski, AJ; Chajęcka-Wierzchowska, W and Zadernowska, A (2022). Linezolid-resistant Enterococcus spp. isolates from foods of animal origin—the genetic basis of acquired resistance. Foods. 11: 975.
Zhou, W; Zhou, H; Sun, Y; Gao, S; Zhang, Y; Cao, X; Zhang, Z; Shen, H and Zhang, C (2020). Characterization of clinical enterococci isolates, focusing on the vancomycin-resistant enterococci in a tertiary hospital in China: based on the data from 2013 to 2018. BMC Infect. Dis., 20: 1-9.