Aguiar, AJ; Luna, SP; Oliva, VN; Eugênio, FR and Castro, GB (2001). Continuous infusion of propofol in dogs premedicated with methotrimeprazine. Vet. Anaesth. Analg., 28: 220-224.
Alletag, MJ; Auerbach, MA and Baum, CR (2012). Ketamine, propofol, and ketofol use for pediatric sedation. Pediatr. Emerg. Care. 28: 1391-1395.
Andolfatto, G and Willman, E (2011). A prospective case series of single-syringe ketamine-propofol (Ketofol) for emergency department procedural sedation and analgesia in adults. Acad. Emerg. Med., 18: 237-245.
Bennett, KJ; Seddighi, R; Moorhead, KA; Messenger, K; Cox, SK; Sun, X; Pasloske, K; Pypendop, BH and Doherty, TJ (2019). Effect of fentanyl on the induction dose and minimum infusion rate of alfaxalone preventing movement in dogs. Vet. Anaesth. Analg., 46: 173-181.
Bloor, BC; Frankland, M; Alper, G; Raybould, D; Weitz, J and Shurtliff, M (1992). Hemodynamic and sedative effects of dexmedetomidine in dog. J. Pharmacol. Exp. Ther., 263: 690-697.
Blouin, RT; Seifert, HA; Babenco, HD; Conard, PF and Gross, JB (1993). Propofol depresses the hypoxic ventilatory response during conscious sedation and isohypercapnia. Anesthesiology. 79: 1177-1182.
Bufalari, A; Di Meo, A; Nannarone, S; Padua, S and Adami, C (2007). Fentanyl or sufentanil continuous infusion during isoflurane anaesthesia in dogs: clinical experiences. Vet. Res. Commun., 31: 277-280.
Changmin, H; Jianguo, C; Dongming, L; Guohong, L and Mingxing, D (2010). Effects of xylazole alone and in combination with ketamine on the metabolic and neurohumoral responses in healthy dogs. Vet. Anesth. Analg., 37: 322-328.
Craven, R (2007). Ketamine. Anaesthesia. 62: 48-53.
Davis, CA; Seddighi, R; Cox, SK; Sun, X; Egger, CM and Doherty, TJ (2017). Effect of fentanyl on the induction dose and minimum infusion rate of propofol preventing movement in dogs. Vet. Anaesth. Analg., 44: 727-737.
Ebner, LS; Lerche, P; Bednarski, RM and Hubbell, JA (2013). Effect of dexmedetomidine, morphine-lidocaine-ketamine, and dexmedetomidine-morphine-lidocaine-ketamine constant rate infusions on the minimum alveolar concentration of isoflurane and bispectral index in dogs. Am. J. Vet. Res., 74: 963-970.
Gutierrez-Blanco, E; Victoria-Mora, JM; Ibancovichi-Camarillo, JA; Sauri-Arceo, CH; Bolio-González, ME; Acevedo-Arcique, CM; Marin-Cano, G and Steagall, PV (2013). Evaluation of the isoflurane-sparing effects of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketamine-dexmedetomidine during ovariohysterectomy in dogs. Vet. Anaesth. Analg., 40: 599-609.
Gutierrez-Blanco, E; Victoria-Mora, JM; Ibancovichi-Camarillo, JA; Sauri-Arceo, CH; Bolio-González, ME; Acevedo-Arcique, CM; Marin-Cano, G and Steagall, PV (2015). Postoperative analgesic effects of either a constant rate infusion of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketamine-dexmedetomidine after ovariohysterectomy in dogs. Vet. Anaesth. Analg., 42: 309-318.
Henao-Guerrero, N and Riccó, CH (2014). Comparison of the cardiorespiratory effects of a combination of ketamine and propofol, propofol alone, or a combination of ketamine and diazepam before and after induction of anesthesia in dogs sedated with acepromazine and oxymorphone. Am. J. Vet. Res., 75: 231-239.
Himes, JR; DiFazio, CA and Burney, RG (1977). Effects of lidocaine on the anesthetic requirements for nitrous oxide and halothane. Anesthesiology. 47: 437-440.
Hogue, CW; Bowdle, TA; O’Leary, C; Duncalf, D; Miguel, R; Pitts, M; Streisand, J; Kirvassilis, G; Jamerson, B and McNeal, S (1996). A multicenter evaluation of total intravenous anesthesia with remifentanil and propofol for elective inpatient surgery. Anesth. Analg., 83: 279-285.
Imani, H; Baniadam, A; Mosallanejad, B and Shabani, S (2016). Comparison of required induction dose, induction and recovery characteristics, and cardiorespiratory effects of co-administration of ketofol with diazepam and midazolam in healthy dogs. Iran. J. Vet. Med., 10: 181-190.
Keating, SC; Kerr, CL; Valverde, A; Johnson, RJ and McDonell, WN (2013). Cardiopulmonary effects of intravenous fentanyl infusion in dogs during isoflurane anesthesia and with concurrent acepromazine or dexmedetomidine administration during anesthetic recovery. Am. J. Vet. Res., 74: 672-682.
Kennedy, MJ and Smith, LJ (2015). A comparison of cardiopulmonary function, recovery quality, and total dosages required for induction and total intravenous anesthesia with propofol versus a propofol-ketamine combination in healthy Beagle dogs. Vet. Anaesth. Analg., 42: 350-359.
Kukanich, B and Clark, T (2012). The history and pharmacology of fentanyl: relevance to a novel, long-acting transdermal fentanyl solution newly approved for use in dogs. J. Vet. Pharmacol. Ther., 35: 3-19.
Kuusela, E; Raekallio, M; Väisänen, M; Mykkänen, K; Ropponen, H and Vainio, O (2001). Comparison of medetomidine and dexmedetomidine as premedicants in dogs undergoing propofol-isoflurane anesthesia. Am. J. Vet. Res., 62: 1073-1080.
Lamont, LA and Mathews, KS (2007). Opioids, nonsteriodal antiinflammatories, and analgesic adjuvants. In: Tranquilli, WJ; Thurmon, JC and Grimm, KA (Eds.), Lumb & Jones’ veterinary anesthesia and analgesia. (4th Edn.), Ames, USA, Blackwell. PP: 241-271.
Lervik, A; Raszplewicz, J; Ranheim, B; Solbak, S; Toverud, SF and Haga, HA (2018). Dexmedetomidine or fentanyl? Cardiovascular stability and analgesia during propofol-ketamine total intravenous anaesthesia in experimental pigs. Vet. Anaesth. Analg., 45: 295-308.
Mair, AR; Pawson, P; Courcier, E and Flaherty, D (2009). A comparison of the effects of two different doses of ketamine used for co-induction of anaesthesia with a target-controlled infusion of propofol in dogs. Vet. Anaesth. Analg., 36: 532-538.
Mannarino, R; Luna, SP; Monteiro, ER; Beier, SL and Castro, VB (2012). Minimum infusion rate and hemodynamic effects of propofol, propofol-lidocaine and propofol-lidocaine-ketamine in dogs. Vet. Anaesth. Analg., 39: 160-173.
Matsubara, LM; Oliva, VN; Gabas, DT; Oliveira, GC and Cassetari, ML (2009). Effect of lidocaine on the minimum alveolar concentration of sevoflurane in dogs. Vet. Anaesth. Analg., 36: 407-413.
Murrell, JC and Hellebrekers, LJ (2005). Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Vet. Anaesth. Analg., 32: 117-127.
Murrell, JC; White, KL; Johnson, CB; Taylor, PM; Doherty, TJ and Waterman-Pearson, AE (2005). Investigation of the EEG effects of intravenous lidocaine during halothane anaesthesia in ponies. Vet. Anaesth. Analg., 32: 212-221.
Nagashima, Y; Furukawa, Y and Chiba, S (2000). Propofol decreases contractility of isolated blood-perfused left ventricular muscle in the dog. J. Anesth., 14: 45-47.
Nagashima, Y; Furukawa, Y; Hirose, M and Chiba, S (1999). Cardiac effects of propofol and its interaction with autonomic nervous system in isolated, cross-circulated canine atria. J. Anesth., 13: 34-39.
Pagel, PS and Warltier, DC (1993). Negative inotropic effects of propofol as evaluated by the regional preload recruitable stroke work relationship in chronically instrumented dogs. Anesthesiology. 78: 100-108.
Pascoe, PJ; Raekallio, M; Kuusela, E; McKusick, B and Granholm, M (2006). Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary
measurements during three continuous infusion rates of dexmedetomidine in dogs. Vet. Anaesth. Analg., 33: 97-103.
Pattinson, KT (2008). Opioids and the control of respiration. Br. J. Anaesth., 100: 747-758.
Rankin, DC (2015). Sedatives and tranquilizers. In: Grimm, KA; Lamont, LA; Tranquilli, WJ; Green, SA and Robertson, SA (Eds.), Veterinary anesthesia and analgesia, The Fifth Edition of Lumb and Jones. Pondichery, India, Wiley Blackwell. PP: 196-206.
Rastabi, HI; Baniadam, A; Ronagh, A; Khajeh, A and Kamyabnia, M (2018). Comparison of intraocular pressure, tear production and cardiorespiratory variables before and after induction of anaesthesia with either propofol or ketofol in dogs premedicated with midazolam. Vet. Med., 63: 271-278.
Reilly, S; Seddighi, R; Egger, CM; Rohrbach, BW; Doherty, TJ; Qu, W and Johnson, JR (2013). The effect of fentanyl on the end-tidal sevoflurane concentration needed to prevent motor movement in dogs. Vet. Anaesth. Analg., 40: 290-296.
Seliskar, A; Nemec, A; Roskar, T and Butinar, J (2007). Total intravenous anaesthesia with propofol or propofol/ ketamine in spontaneously breathing dogs premedicated with medetomidine. Vet. Rec., 160: 85-91.
Smischney, NJ; Beach, ML; Loftus, RW; Dodds, TM and Koff, MD (2012). Ketamine/propofol admixture (ketofol) is associated with improved hemodynamics as an induction agent: a randomized, controlled trial. J. Trauma. Acute. Care Surg., 73: 94-101.
Smith, LJ; Bentley, E; Shih, A and Miller, PE (2004). Systemic lidocaine infusion as an analgesic for intraocular surgery in dogs: a pilot study. Vet. Anaesth. Analg., 31: 53-63.
Steagall, PV; Neto, FJT; Minto, BW; Campagnol, D and Corrêa, MA (2006). Evaluation of the isoflurane-sparing effects of lidocaine and fentanyl during surgery in dogs. J. Am. Vet. Med. Assoc., 229: 522-527.
Ueyama, Y; Lerche, P; Eppler, CM and Muir, III WW (2009). Effects of intravenous administration of perzinfotel, fentanyl, and a combination of both drugs on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res., 70: 1459-1464.
Valverde, A; Doherty, TJ; Hernández, J and Davies, W (2004). Effect of lidocaine on the minimum alveolar concentration of isoflurane in dogs. Vet. Anaesth. Analg., 31: 264-271.
Vickery, RG; Sheridan, BC; Segal, IS and Maze, M (1988). Anesthetic and hemodynamic effects of the stereoisomers of medetomidine, an alpha 2-adrenergic agonist, in halothane-anesthetized dogs. Anesth. Analg., 67: 611-615.
Weitz, JD; Foster, S; Waugaman, W; Katz, R and Bloor, B (1991). Anesthetic and hemodynamic effects of dexmedetomidine during isoflurane anesthesia in a canine model. Nurse. Anesth., 2: 19-27.
Wilson, J; Doherty, TJ; Egger, CM; Fidler, A; Cox, S and Rohrbach, B (2008). Effects of intravenous lidocaine, ketamine, and the combination on the minimum alveolar concentration of sevoflurane in dogs. Vet. Anaesth. Analg., 35: 289-296.