Abd Alkader, FS and Hyyawi, SM (2021). Isolation and identification of GBS bacteria from mastitis by CAMP test and Lancefield’s serological grouping. Plant Arch., 21: 770-773.
Amosun, E; Ajuwape, A and Adetosoye, AI (2010). Bovine streptococcal mastitis in southwest and northern states of Nigeria. Afr. J. Biomed. Res., 13: 33-37.
Atyabi, N; Vodjgani, M; Gharagozloo, F and Bahonar, A (2006). Prevalence of bacterial mastitis in cattle from the farms around Tehran. Iran. J. Vet. Res., 7: 76-79.
Beckmann, C; Waggoner, JD and Harris, TO (2002). Identification of novel adhesins from group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect. Immun., 70: 2869-2876.
Bergseng, H; Lars, B; Marite, R and Kare, B (2007). Real-time PCR targeting the sip gene for detection of group B Streptococcus colonization in pregnant women at delivery. J. Med. Microbiol., 56: 223-228.
Carvalho-Castro, GA; Silva, JR; Paiva, LV; Custódio, DA; Moreira, RO; Mian, GF; Prado, IA; Chalfun-Junior, A and Costa, GM (2017). Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds. Braz. J. Microbiol., 48: 551-559.
Dad, RK; Shakoor, A; Avais, M; Muhammad, G and Hussain, R (2007). Serology based immunological cross reactivity among various isolates of Streptococcus agalactiae from mastitic buffaloes. Ital. J. Anim. Sci., 6: 865-868.
Ding, Y; Zhao, J; He, X; Li, M; Guan, H; Zhang, Z and Li, P (2016). Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Pharm. Biol., 54: 162-167.
Dmitriev, A; Shakleina, E and Tkacikova, L (2002). Genetic heterogeneity of the pathogenic potentials of human and bovine group B Streptococci. Folia Microbiol., 47: 291-295.
Dmitriev, A; Suvorov, A; Shen, A and Yang, H (2004). Clinical diagnosis of group B streptococci by scpB gene based PCR. Indian J. Med. Res., 199: 233-236.
Doran, KS; Liu, G and Nizet, V (2003). Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J. Clin. Investig., 112: 736-744.
El-Jakee, J; Hableel, HS; Kandil, M; Hassan, OF; Khairy, EA and Marouf, SA (2013). Antibiotic resistance patterns of Streptococcus agalactiae isolated from mastitic cows and ewes in Egypt. Glob. Vet., 10: 264-270.
Elkenany, R (2020). CylE and mig as virulence genes of streptococci isolated from mastitis in cows and buffaloes in Egypt. Mansoura Vet. Med. J., 21: 149-154.
FDA (2001). Bacteriological Analytical Manual. Food and Drug Administration (FDA). Cited from
http://www.scribd. com, Accessed on 08.02.2021.
Ghose, B and Sharda, R (2004). Streptococcal mastitis in dairy cows. Indian Vet. Med. J., 28: 163-164.
Harley, JP and Prescott, LM (2002). Laboratory exercises in microbiology. 5th Edn., Chapter 30: Proteins, amino acids, and Enzymes VII: Oxidase test. New York, USA, The McGraw-Hill Co., PP: 179-184.
Jain, B; Tewari, A; Bhandari, BB and Jhala, MK (2012). Antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from cases of bovine subclinical mastitis. Vet. Arh., 82: 423-432.
Javia, BB; Mathapati, BS; Barad, DB; Ghodasara, SN; Savsani, HH; Bhadaniya, AR; Fefar, DT; Patel, UD and Sindhi, SH (2020). Bacteriological and molecular detection with antimicrobial resistance pattern of major Streptococcus spp. isolated from bovine mastitis. Int. J. Curr. Microbiol. App. Sci., 9: 2443-2451.
Javia, BB; Purohit, JH; Mathapati, BS; Barad, DB; Savsani, HH; Ghodasara, SN; Kalariya, VA; Patel, UD and Nimavat, VR (2018). Molecular detection and antimicrobial resistance pattern of Staphylococci isolated from clinical and subclinical bovine mastitis. Indian J. Vet. Sci. Biotechnolo., 14: 13-16.
Kia, G; Mehdi, G and Keyvan, R (2014). Prevalence and antibiotic susceptibility of Streptococcus spp. in cows with mastitis in Germi, Iran. Anim. Vet. Sci., 2: 31-35.
Nithinprabhu, K (2010). Isolation, characterization and genetic diversity of Streptococcus species in subclinical bovine mastitis. MVSc Thesis, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India. P: 53.
Picard, FJ; Ke, D; Boudreau, DK; Boissinot, M; Huletsky,
A; Richard, D; Ouellette, M; Roy, PH and Bergeron, MG (2004). Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J. Clin. Microbiol., 42: 3686-3695.
Radtke, A; Bruheim, T; Afset, JE and Bergh, K (2012). Multiple-locus variant-repeat assay (MLVA) is a useful tool for molecular epidemiologic analysis of Streptococcus agalactiae strains causing bovine mastitis. Vet. Microbiol., 157: 398-404.
Richards, VP; Lang, P; Bitar, PDP; Lefebure, T; Schukken, YH; Zadoks, RN and Stanhope, MJ (2011). Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. Infect. Genet. Evol., 11: 1263-1275.
Riffon, R; Sayasith, K; Khalil, H; Dubreuil, P; Drolet, M and Lagace, J (2001). Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J. Clin. Microbiol., 39: 2584-2589.
Sandholm, M; Honkanen-Buzalski, L; Kaartinen, S and Pyörälä, S (1995). Isolation and identification of pathogens from milk. In: The bovine udder and mastitis. Jyväskylä, Finland, Gummerus Press. PP: 121-141.
Shrestha, S and Bindari, YR (2012). Prevalence of subclinical mastitis among dairy cattle in Bhaktapur District, Nepal. Int. J. Agric. Biosci., 1: 16-19.
Yang, Y; Liu, Y; Ding, Y; Yi, L; Ma, Z; Fan, H and Lu, C (2013). Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS One. 8: e6775.