Amimoto, K; Noro, T; Oishi, E and Shimizu, M (2007). A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology. 153: 1198-1206. https://doi: 10.1099/mic.0.2006/002287-0.
Chen, J; Ma, M; Uzal, FA and McClane, BA (2014). Host cell-induced signaling causes
Clostridium perfringens to upregulate production of toxins important for intestinal infections. Gut Microbes. 5: 96-107.
https://doi: 10.4161/ gmic.26419.
Chen, J; Rood, JI and McClane, BA (2011). Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. MBio. 2: e00275-11. https://doi.org/10.1128/mBio.00275-11.
Fisher, DJ; Fernandez-Miyakawa, ME; Sayeed, S; Poon, R; Adams, V; Rood, JI; Uzal, FA and McClane, BA (2006). Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect. Immun., 74: 5200-5210.
Florence, LCH; Hakim, SL; Kamaluddin, MA and Thong, KL (2011). Determination of toxinotypes of environmental Clostridium perfringens by Polymerase Chain Reaction. Trop. Biomed., 28: 171-174.
Gkiourtzidis, K; Frey, J; Bourtzi-Hatzopoulou, E; Iliadis, N and Sarris, K (2001). PCR detection and prevalence of α-, β-, β2-, ε-, ι- and enterotoxin genes in Clostridium perfringens isolated from lambs with clostridial dysentery. Vet. Microbiol., 82: 39-43.
Gray, B; Hall, P and Gresham, H (2013). Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors. 13: 5130-5166.
Li, J; Sayeed, S; Robertson, S; Chen, J and McClane, BA (2011). Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718. PLoS Pathog., 7: e1002429. https://doi: 10.1371/journal.ppat.1002429.
Matsuki, T; Watanabe, K; Fujimoto, J; Takada, T and Tanaka, R (2004). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol., 70: 7220-7228. https://doi: 10.1128/AEM.70.12.7220-7228. 2004.
Ohtani, K (2016). Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe. 41: 5-9. https://doi.org/ 10.1016/j.anaerobe.2016.06.003.
Petit, L; Gibert, M; Gourch, A; Bens, M; Vandewalle, A and Popoff, MR (2003).
Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells. Cell Microbiol., 5: 155-164.
https://doi: 10.1128/jb.179.20.6480-6487.1997.
Pfaffl, MW; Horgan, GW and Dempfle, L (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res., 30: e36. https://doi: 10.1093/nar/30.9.e36.
Poormontaseri, M; Hosseinzadeh, S; Shekarforoush, SS and Kalantari, T (2017). The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type A in Caco-2 cell culture. BMC Microbiol., 17: 1-8. https://doi: 10.1186/s12866-017-1051-1.
Popoff, MR (2011). Epsilon toxin: a fascinating pore-forming toxin. FEBS. 278: 4602-4615. https//doi: 10.1111/j.1742-4658.2011.08145.x.
Revitt-Mills, SA; Rood, JI and Adams, V (2015). Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol. Aust., 36: 114-117.
Rood, JI; Adams, V; Lacey, J; Lyras, D; McClane, BA; Melville, SB; Moore, RJ; Popoff, MR; Sarker, MR; Songer, JG; Uzal, FA and Immerseel, FV (2018). Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 53: 5-10. doi: 10.1016/j. anaerobe.2018.04.011.
Schlegel, BJ; Nowell, VJ; Parreira, VR; Soltes, G and Prescott, JF (2012). Toxin-associated and other genes in Clostridium perfringens type A isolates from bovine clostridial abomasitis (BCA) and jejunal hemorrhage syndrome (JHS). Can. J. Vet. Res., 76: 248-254.
Shimamoto, S; Tamai, E; Matsushita, O; Minami, J; Okabe, A and Miyata, S (2005). Changes in ganglioside content affect the binding of Clostridium perfringens epsilon-toxin to detergent-resistant membranes of Madin-Darby canine kidney cells. Microbiol. Immunol., 49: 245-253.
Shimizu, T; Ohtani, K; Hirakawa, H; Ohshima, K; Yamashita, A; Shiba, T; Ogasawara, N; Hattori, M; Kuhara, S and Hayashi, H (2002). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. PNAS. 99: 996-1001.
Uzal, FA; Freedman, JC; Shrestha, A; Theoret, JR; Garcia, J; Awad, MM; Adams, V; Moore, RJ; Rood, JI and McClane, BA (2014). Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol., 9: 361-377.
Uzal, FA; Kelly, WR; Morris, WE; Bermudez, J and Baisón, M (2004). The pathology of peracute experimental
Clostridium perfringens type D enterotoxemia in sheep. J. Vet. Diagn. Invest., 16: 403-411.
Vidal, JE; Ohtani, K; Shimizu, T and McClane, BA (2009). Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell Microbiol., 11: 1306-1328. https//doi: 10.1111/j.1462-5822.2009.01332.x.
Wang, H; Shen, X; Zhao, Y; Wang, M; Zhong, Q; Chen, T; Hu, F and Li, M (2012). Identification and proteome analysis of the two-component VirR/VirS system in epidemic Streptococcus suis serotype 2. FEMS Microbiol. Lett., 333: 160-168. doi: 10.1111/j.1574-6968.2012.02611. x.