Molecular characterization of Mycobacterium bovis strains isolated from cattle and humans by spoligotyping and 24-locus MIRU-VNTR, and prevalence of positive IGRA in slaughterhouse workers in Southern Turkey

Document Type : Full paper (Original article)


1 Department of Microbiology, Ceyhan Veterinary Faculty, Cukurova University, 01330, Adana, Turkey

2 Tuberculosis Region Laboratory, Tropical Disease and Research Center, Cukurova University, 01330, Adana, Turkey

3 Microbiology Laboratory, Adana City Hospital, 01230, Adana, Turkey

4 MSc, Microbiology Laboratory, Adana Veterinary Control Institute, 01250, Adana, Turkey

5 Department of Microbiology, Medicine Faculty, Cukurova University, 01330, Adana, Turkey

6 Department of Pathology, Ceyhan Veterinary Faculty, Cukurova University, 01330, Adana, Turkey

7 Department of Microbiology, Veterinary Faculty, Kastamonu University, 37150, Kastamonu, Turkey


Background: Mycobacterium bovis is a zoonotic member of the Mycobacterium tuberculosis complex with a wide range of hosts, mainly cattle. Molecular epidemiological studies should be conducted to determine the transmission route, zoonotic risk factors, and phylogenetic relationships of M. bovis strains. Aims: This study aimed to characterize bovine and human M. bovis isolates by molecular methods. Methods: Molecular characterization and clonal relationship of strains isolated from tissue and organ samples of 76 cattle with positive tuberculin tests were collected from a slaughterhouse, and four M. bovis strains isolated from clinical materials of patients with suspected pulmonary TB isolates were analyzed using 24-locus MIRU-VNTR and spoligotyping methods. QuantiFERON-TB Gold Plus (QFT-Plus; Qiagen) was used to determine the prevalence of latent TB infection among 21 slaughterhouse personnel including 7 veterinarians, 12 butchers, 1 caretaker, and 1 veterinary technician. Results: SB0288/SIT685 type was detected in both cattle and humans by the spoligotyping method. When evaluating MIRU-VNTR, the presence of a 100% compatible pattern between human and bovine isolates was not detected, but some human samples were found to be 91.6% similar to a bovine sample. In addition, 21 slaughterhouse workers were screened with the interferon gamma-released assay (IGRA) and a 23.8% positivity was detected. Conclusion: Clonal similarity was determined between the bovine and human isolates using the MIRU-VNTR and spoligotyping methods and IGRA positivity in the occupational group suggested that M. bovis might be associated with pulmonary tuberculosis in humans.


Avsever, M; Çavuşoğlu, C; Yazıcıoğlu, Ö; Eskiizmirliler, S; Erdal, G; Günen, M; Tunalıgil, S; Alparslan, B and Aksoy, A (2017). New spoligotyping pattern of Mycobacterium bovis isolates from farm animals in Turkey. Ankara Univ. Vet. Fak. Derg., 64: 37-43.
Brunello, F; Ligozzi, M; Cristelli, E; Bonora, S; Tortoli, E and Fontana, R (2001). Identification of 54 mycobacterial species by PCR-Restriction Fragment Length Poly-morphism analysis of the hsp65 Gene. J. Clin. Microbiol., 39: 2799-2806.
Carneiro, PAM; Pasquatti, TN; Takatani, H; Zumárraga, MJ; Marfil, MJ; Barnard, C; Fitzgerald, SD; Abramovitch, RB; Araujo, FJ and Kaneene, JB (2020). Molecular characterization of Mycobacterium bovis infection in cattle and buffalo in Amazon Region, Brazil. Vet. Med. Sci., 6: 133-141.
Carvalho, RCT; Vasconcellos, SEG; Issa, MA; Filho, PMS; Mota, PMPC; de Araújo, FR; Carvalho, ACS; Gomes, HM; Suffys, PN; Figueiredo, EES and Paschoalin, VMF (2016). Molecular typing of Mycobacterium bovis from cattle reared in Midwest Brazil. PloS One. 1-16.
Çavuşoğlu, C and Yılmaz, FF (2017). Molecular epidemio-logy of human Mycobacterium bovis infection in Aegean Region, Turkey. Mikrobiyol. Bul., 51: 165-170.
Cobos-Marín, L; Montes-Vargas, J; Zumarraga, M; Cataldi, A; Romano, MI; Estrada-Garcia, I and Gonzalez-y-Merchand, JA (2005). Spoligotype analysis of Mycobacterium bovis isolates from Northern México. Can. J. Microbiol., 51: 996-1000.
Couvin, D; David, A; Zozio, T and Rastogi, N (2019). Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect. Genet. Evol., 72: 31-43.
Djemal, SE; Siala, M; Smaoui, S; Kammoun, S; Marouane, C; Bezos, J; Messadi-Akrout, F; Romero, B and Gdoura, R (2017). Genetic diversity assessment of Tunisian Mycobacterium bovis population isolated from cattle. BMC Vet. Res., 13: 393.
Djibuti, M; Mirvelashvili, E; Makharashvili, N and Magee, JM (2014). Household income and poor treatment outcome among patients with tuberculosis in Georgia: a cohort study. BMC Pub. Health. 14: 88.
Duarte, EL; Domingos, M; Amado, A and Botelho, A (2008). Spoligotype diversity of Mycobacterium bovis and Mycobacterium caprae animal isolates. Vet. Microbiol., 130: 415-421.
Duarte, EL; Domingos, M; Amado, A; Cunha, MV and Botelho, A (2010). MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping. Vet. Microbiol., 143: 299-306.
Elsayed, MSA (2019). A first insight into the application of high discriminatory MIRU-VNTR typing using QIAxcel technology for genotyping Mycobacterium bovis isolated from the Delta area in Egypt. Inf. Gen. Evol., 71: 211-214.
Ergönül, Ö; Tülek, N; Kayı, I; Irmak, I; Erdem, O and Dara, M (2020). Profiling infectious diseases in Turkey after the influx of 3.5 million Syrian refugees. Clin. Mic. Inf., 26: 307-312.
Ghavidel, M; Mansury, D; Nourian, K and Ghazvini, K (2018). The most common spoligotype of Mycobacterium bovis isolated in the world and the recommended loci for VNTR typing; A systematic review. Microb. Pathog., 118: 310-315.
Ingram, PR; Bremner, P; Inglis, TJ; Murray, RJ and Cousins, DV (2010). Zoonotic tuberculosis: on the decline Communicable Diseases Intelligence. 34: 339-344.
Jiang, G; Wang, G; Chen, S; Yu, X; Wang, X; Zhao, L; Ma, Y; Dong, L and Huang, H (2015). Pulmonary tuberculosis caused by Mycobacterium bovis in China. Sci. Rep., 4: 8538.
Kamerbeek, J; Schouls, L; Kolk, A; van Agterveld, M; van Soolingen, D; Kuijper, S; Bunschoten, A; Molhuizen, H; Shaw, R; Goyal, M and van Embden, J (1997). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol., 35: 907-914.
Khattak, I; Mushtaq, MH; Ahmad, MU; Khan, MS and Haider, J (2016). Zoonotic tuberculosis in occupationally exposed groups in Pakistan. Occup. Med., 66: 371-376.
Kremer, K; van Soolingen, D; Frothingham, R; Haas, WH; Hermans, PW; Martín, C; Palittapongarnpim, P; Plikaytis, BB; Riley, LW; Yakrus, MA; Musser, JM and van Embden, JD (1999). Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: inter-laboratory study of discriminatory power and reproducibility. J. Clin. Microbiol., 37: 2607-2618.
Kubica, T; Rusch-Gerdes, S and Niemann, S (2003). Mycobacterium bovis subsp. caprae caused one-third of human M. bovis-associated tuberculosis cases reported in Germany between 1999 and 2001. J. Clin. Microbiol., 41: 3070-3077.
Machado, A; Rito, T; Ghebremichael, S; Muhate, N; Maxhuza, G; Macuamule, C; Moiane, I; Macucle, B; Marranangumbe, AS; Baptista, J; Manguele, J; Koivula, T; Streciher, EM; Warren, RM; Kallenius, G; van Helden, P and Correia-Neves, M (2018). Genetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique. PLOS Neg. Trop. Dis., 12: e0006147.
Menzies, D; Schwartzman, K and Pai, M (2009). Immune-based tests for tuberculosis. In: Zumla, AS; Grange, JM; Raviglione, MC; Yew, WW; Starke, JR; Pai, M and Donald, PR (Eds.), Tuberculosis. (2nd Edn.), Elsevier Health Sciences, W. B. Saunders. PP: 179-196.
Mertoğlu, A; Biçmen, C; Karaarslan, S and Buğdayci, MH (2018). Pulmonary tuberculosis due to Mycobacterium bovis revealed by skin lesion in slaughterhouse worker. Clin. Respir. J., 12: 317-321.
Munyeme, M; Rigouts, L; Shamputa, IC; Muma, JB; Tryland, M; Skjerve, E and Djønne, B (2009). Isolation and characterization of Mycobacterium bovis strains from indigenous Zambian cattle using Spacer oligonucleotide typing technique. BMC Microbiol., 9: 144.
O’Reilly, LM and Daborn, CJ (1995). The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber. Lung. Dis., 76: 1-46.
Parreiras, PM; Andrade, GI; Nascimento, TF; Oelemann, MC; Gomes, HM; Alencar, AP; Assis, RA; Mota, PMPC; Pereira, MAS; Lobato, FCF; Lage, AP and Suffys, PN (2012). Spoligotyping and variable number tandem repeat analysis of Mycobacterium bovis isolates from cattle in Brazil. Mem. Inst. Oswaldo Cruz., 107: 64-73.
Rodriguez, S; Romero, B; Bezos, J; de Juan, L; Alvarez, J; Castellanos, E; Moya, N; Lozano, F; Gonzales, S; Saez-Lorente, JL; Mateos, A; Dominquez, L and Aranaz, A (2010). High spoligotype diversity within a Mycobacterium bovis population: clues to understanding the demography of the pathogen in Europe. Vet. Microbiol., 141: 89-95.
Sahraoui, N; Muller, B; Guetarni, D; Boulahbal, F; Yala, D; Ouzrout, R; Berg, S; Smith, NH and Zinsstag, J (2009). Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria. BMC Vet. Res., 5: 4.
Shrikrishna, D; de la Rua-Domenech, R; Smith, NH; Colloff, A and Coutts, I (2009). Human and canine pulmonary Mycobacterium bovis infection in the same household: re-emergence of an old zoonotic threat? Thorax., 64: 89-91.
Sichewo, PR; Hlokwe, TM; Etter, EMC and Michel, AL (2020). Tracing cross species transmission of Mycobacterium bovis at the wildlife/livestock interface in South Africa. BMC Microbiol., 20: 49.
Skuce, RA; Mallon, TR; McCormick, CM; McBride, SH; Clarke, G; Thompson, A; Couzens, C; Gordon, AW and McDowell, SWJ (2010). Mycobacterium bovis genotypes in Northern Ireland: herd level surveillance (2003 to 2008). Vet. Rec., 167: 684-689.
Sola, C; Filliol, I; Legrand, E; Lesjean, S; Locht, C; Supply, P and Rastogi, N (2003). Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Inf. Genet. Evol., 3: 125-133.
Spositto, FLE; Campanerut, PAZ; Ghiraldi, LD; Leite, CQF; Hirata, MH; Hirata, RDC; Siqueira, VLD and Fressatti, CR (2014). Multiplex-PCR for differentiation of Mycobacterium bovis from Mycobacterium tuberculosis complex. Braz. J. Mic., 45: 841-843.
Supply, P; Allix, C; Lesjean, S; Cardoso-Oelemann, M; Rüsch-Gerdes, S; Willery, E; Savine, E; de Haas, P; van Deutekom, H; Roring, S; Bifani, P; Kurepina, N; Kreiswirth, B; Sola, C; Rastogi, N; Vatin, V; Gutierrez, MC; Fauville, M; Niemann, S; Skuce, R; Kremer, K; Locht, C and van Soolingen, D (2006). Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol., 44: 4498-4510.
Tadayon, K; Mosavari, N and Feizabadi, MM (2013). An epidemiological perspective on bovine tuberculosis spotlighting facts and dilemmas in Iran; a historically zebu-dominant farming country. Iran J. Mic., 5: 1-13.
Tadayon, K; Mosavari, N; Sadeghi, F and Forbes, KJ (2009). Mycobacterium bovis infection in Holstein Friesian
cattle; Iran. Emerg. Infect. Dis., 14: 1919-1921.
Takasaki, J; Manabe, T; Morino, E; Muto, Y; Hashimoto, Y; Likura, M; Izumi, S; Sugiyama, H and Kudo, K (2017). Sensitivity and specificity of QuantiFERON-TB Gold Plus compared with QuantiFERON-TB Gold In-Tube and T-SPOT.TB on active tuberculosis in Japan. J. Inf. Chem., 24: 188-192.
Thoen, CO; Kaplan, B; Thoen, TC; Gilsdorf, MJ and Shere, JA (2016). Zoonotic tuberculosis. A comprehensive one health approach. Medicina (B Aires). 76: 159-165.
Torres-Gonzalez, P; Soberanis-Ramos, O; Martinez-Gamboa, A; Chavez-Mazari, B; Barrios-Herrera, MT; Torres-Rojas, M; Cruz-Hervert, LP; Garcia-Garcia, L; Singh, M; Gonzalez-Aguirre, A; de Leon-Garduño, AP; Sifuentes-Osornio, J and Bobadilla-Del-Valle, M (2013). Prevalence of latent and active tuberculosis among dairy farm workers exposed to cattle infected by Mycobacterium bovis. PLOS Neg. Trop. Dis., 7: e2177.
Tuzcu, N and Köksal, F (2020). Genetic evaluation of Mycobacterium bovis isolates with MIRU-VNTR and spoligotyping. Turk. J. Med. Sci., 50: 2017-2023.
Vayr, F; Martin-Blondel, G; Savall, F; Soulat, JM; Deffontaines, G and Herin, F (2018). Occupational exposure to human Mycobacterium bovis infection: A systematic review. PLoS Negl. Trop. Dis., 12: e0006208.
Weniger, T; Krawczyk, J; Supply, P; Niemann, S and Harmsen, D (2010). MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res., 38: 326-331.
WHO (2017). End TB by 2030. Framework for implementing the “End TB Strategy” In the African region 2016-2020. Cited Dec.20.2020. handle/10665/259636/TBstrateng.pdf?sequence=1.
Yahyaoui-Azami, H; Aboukhassib, H; Bouslikhane, M; Berrada, J; Rami, S; Reinhard, M; Gagneux, S; Feldmann, J; Borrell, S and Zinsstag, J (2017). Molecular characterization of bovine tuberculosis strains in two slaughterhouses in Morocco. BMC Vet. Res., 13: 272.
Yang, L; Wang, C; Wang, H; Meng, Q and Wang, Q (2015). Evaluation of MIRU-VNTR for typing of Mycobacterium bovis isolated from Sika deer in Northeast China. BMC Vet. Res., 11: 93.