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Summary 
 

 Prolactin is mainly secreted by the anterior pituitary and is able to stimulate mammary gland 
development and lactation in mammalians. Although prolactins share a common ancestral gene encoding, 
they show species specific characteristics and their efficiency may be different in various mammals. The 
importance of protein structures of all sequences of this hormone have been studied by various 
bioinformatics algorithms. The results showed bioinformatics tools and modeling methods can be used to 
identify the species specificity of prolactin hormones in animals with an acceptable precision rate. Based on 
the author’s knowledge, this is the first report on the structural variation of prolactin hormones by specific 
structural protein features. Gain ratio model acquired the best accuracy and performance among the 
algorithms applied here and can be used on similar proteins. The counts and the frequencies of dipeptides 
were the most important protein attributes in this regard. It has also been reported here that feature selection 
or attribute weighting can be used to select the most important protein attributes and to reduce the burden of 
processing equipment. The new findings presented here open up new windows in understanding the 
characteristics of prolactin hormones and also pave the way to engineer more efficient hormones by using 
various mutagenesis tools such as site directed mutagenesis. 
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Introduction 
 

 Prolactin is mainly secreted by 
lactotrophic cells of the anterior pituitary 
and its secretion is mainly controlled by 
inhibitory factors originating from the 
hypothalamus (Pariante, 2008). The 
prolactin gene is regulated at the 
transcriptional level by two distinct 
promoters. The proximal promoter, also 
referred to as the pituitary promoter, covers 
~5 kb upstream of the transcription site, in 
which the 250 bp just before the Cap 
(capping of polymerase on RNA) site (in 
exon 1 b) are necessary and sufficient for 
transcription (Hiyama et al., 2009). The 
second promoter, referred to as the extra-
pituitary promoter, includes ~3 kb upstream 
of exon 1 a (itself located ~5.8 kb upstream 
for the initiation site) (Swaminathan et al., 
2008). Depending on promoter usage, 
prolactin mRNAs differ in length by 134 bp, 

but they encode identical mature protein. 
Posttranslational modifications are not 
required for the hormone to be fully active. 
In fact, posttranslational modifications are 
more often detrimental than beneficial to 
prolactin bioactivity (Nichols and Green-
Church, 2009). 

 Prolactin shares high structural and 
functional similarity with two other 
polypeptide hormones, growth hormone and 
placental lactogen (Ben-Jonathan et al., 
2008; LaPensee et al., 2009). It is thought 
that the genes encoding these proteins 
evolved from a common ancestral gene by 
duplication. More recently, newly identified 
proteins such as proliferin, proliferin-
related-protein, somatolactine, or several 
prolactin-like proteins have been added to 
this family based on sequence similarities 
(Liu et al., 2009). More than 300 separate 
biological activities have been attributed to 
prolactin, and can be subdivided into the 
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following categories: functions linked to 
reproduction, endocrinology and meta-
bolism, control of water and electrolyte 
balance, growth and development, brain and 
behavior, and finally, immunoregulation and 
protection (Trott et al., 2008). 

 Data mining problems often involve 
hundreds or even thousands of variables (Ye 
et al., 2009). Fitting a model such as a 
decision tree or item set mining to a set of 
variables this large may require more time 
than is practical (Gromiha and Yabuki, 
2008). Usually, many attributes determine 
the different characteristics of a protein 
molecule. As a result, the majority of time 
and effort spent in the model-building 
process involves determining which 
variables to include in the model. Various 
models such as attribute weighting (or 
feature selection) allow the variable set to be 
reduced in size, creating a more manageable 
set of attributes for modeling (Zhu et al., 
2010). The decision tree algorithm predicts 
the value of a discrete dependent variable 
with a finite set from the values of a set of 
independent variables (Dancey et al., 2007). 
A decision tree is constructed by looking for 
regularities in data, determining the features 
to add at the next level of the tree using an 
entropy calculation, and then choosing the 
feature that minimizes the entropy impurity 
(Gromiha, 2007). Several well-known 
decision tree algorithms are available 
(Huang et al., 2009). To better understand 
the features that contribute to structural 
differences between prolactin hormones in 
various species, it is necessary to identify 
the main features responsible for this 
valuable characteristic. Herein we have used 
various clustering, screening, item set 
mining and decision tree models to 
determine the most important features 
responsible for prolactin hormones in 
various species. 
 
Materials and Methods 
 

 All available protein sequences of 
prolactin hormone (112 so far) from various 
animals (alligator, bovine, camel, carp, cat, 
catfish, chicken, deer, eel, elephant, 
flounder, goat, goldfish, sheep, possum, 
human, pig, mink, tilapia, salmon, trout, 
goat, mouse, rat, flounder, pigeon, sea bass, 

sea bream, turkey, whale, turtle, lungfish, 
hamster, toad and monkey) have been 
extracted from the UniProt knowledgebase 
(Swiss-Prot and TrEMBL; www.expasy.org) 
database. Eight hundred and ninety nine 
protein features such as length, weight, 
isoelectric point, count and frequency of 
each element (carbon, nitrogen, sulfur, 
oxygen and hydrogen), count and frequency 
of each amino acid, count and frequency of 
negatively charged, positively charged, 
hydrophilic and hydrophobic residues, count 
and frequency of dipeptides, number of α-
helix and β-strand and other secondary 
protein features, as well as bond angle, bond 
length, dihedral angle and other tertiary 
protein features were extracted. All features 
were classified as continuous variables, 
except for the N-terminal amino acid and the 
type of organisms which were classified as 
categorical. A dataset of these protein 
features was imported into Clementine 
software (Clementine_NLV-11.1.0.95; In-
tegral Solution, Ltd.), null data for the type 
of organism were discarded and set as the 
output variable and the other variables were 
set as input variables. The same database 
was imported into RapidMiner software 
(RapidMiner 5.0.001, Rapid-I GmbH, 
Stochumer Str. 475, 44227 Dortmund, 
Germany) and the type of organism set as 
the target or label attribute (when Item Set 
Mining model performed, no label or target 
attribute was set as this model requires so). 

 To identify the most important features 
contributing to the type of prolactin 
hormone in different animals, various 
screening models (anomaly detection model, 
feature selection algorithm or attribute 
weighting), clustering models (K-Means, 
TwoStep cluster), tree Induction models 
(with various criterion, C5.0, C5.0 with 10-
fold cross validation and C&RT), Item Set 
Mining (FPGrowth) and Rule Induction 
model (10 fold cross-validation through 
stratified sampling) were employed as 
described previously (Ebrahimi et al., 2009). 
Whenever requested by the model, data were 
discretized by frequency; i.e. data were 
divided into 3 bins (ranges) with nearly 
equal frequencies in each class (low 0-0.3, 
mid 0.3-5 and high >0.5), and sometimes 
data were converted to nominal, and in some 
cases to binominal datasets. 
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Results 
 

 The statistical findings on prolactin 
hormones have been presented in Table 1. In 
87.06% of proteins the N-terminal amino 
acid was Met; in 9.41, 1.18, 1.18, and 1.18% 
of proteins the same position was occupied 
by Pro, Lys, Leu, and Ile, respectively. 
Figure 1 is a web graph that illustrates the 
strength of the relationship between N-
terminal amino acids and species. Met 
exhibits a strong relationship with most 
organisms (a thicker line shows a stronger 
relationship). Leu was the only N-terminal 
amino acid found in turtle, lungfish, camel, 
whale and alligator, while Ile, Lys and Pro 
were found solely in carp, elephant and toad. 
 
Attribute weighting 

 As data should be normalized before 
running various weighting models (as it 

follows), it would be reasonable to expect 
that all weights be between 0 to 1. The 
results of attribute weighting algorithms 
have been presented in Appendix 2. The 
number of attributes with weight higher than 
0.70 were: 14, 8, 15, 139, 26, 17, 7, 4, 332 
and 3 in PCA, SVM, relief, uncertainty, gini 
index, Chi-squared, deviation, rule, gain 
ratio and info gain weighting models, 
respectively. 
 
Item set mining 

 When FP-Growth was run on all 
attributes, more than 281 rules were created. 
The support of the rules went up to 99% for 
the nitrogen count when its value was high 
(higher than 0.5). When the weight of the 
proteins and the nitrogen count were high, 
the support lowered to 99%. When the half-
life of mammals and hydrogen count were 
high, the supports were 89%. When the

 
Table 1: Rules induced by information gain criterion of rule induction model on numeric data 

Rules Organisms 
If the freq of nitrogen ≤0.536 and count of negatively charged ≤0.523 Mouse 
If the count of Arg (R) ≤0.602 and isoelectric point >0.169 and Ala-Trp ≤0.500 Rat 
If the count of Asp-Gly >0.833 Salmon 
If the count of Gln-Val >0.500 Alligator 
If the count of Ser-Ser >0.611 Carp 
If the count of Asp-Lys >0.500 Tilapia 
If the count of Asp-Ile ≤0.250 Hamster 
If Ala-Arg >0.833 Eel 
If the count of Phe-Arg >0.500 Grey opossum 
If the count of Cys-Leu >0.750 Seabream 
If the count of Lys-Thr >0.833  Human 
If the count Gly-Arg >0.833 Pig 
If the count of hydrophobic residue >0.754 Sheep 
If the count of Ala-Lys >0.833 Elephant 
If the count of hydrogen >0.768 Horse 
If the count of His-Ser >0.833 Chicken 
If the count of Ala-Gln ≤0.167 Turkey 
If the frequency of Asn-Gln >0.346 Camel 
If count of oxygen >0.631 Mink 
If the count of Ile-Gln >0.750 Whale 
If the count of Cys-Asp >0.250 Turtle 
If the count of Ala-Cys >0.500 Lungfish 
If the count of Beta sheet ≤0.036 Toad 
If the count of Glu-His >0.750 Cat 
If the count of Ala-Met >0.750 Catfish 
If the count of Glu-Val >0.250 Monkey 
If the count of Ala-Leu >0.500 Goldfish 
If the count of Ala-Asp >0.750 Rabbit 
If the count of Ala-Asp >0.250 Deer 
If the count of Beta sheet ≤0.429 then panda Panda 
Else flounder  
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Fig. 1: Web graph of N-terminal amino acids of prolactin hormones in various organisms, thicker lines 
showing higher incidences of amino acids 
 
nitrogen count, weight of proteins and the 
hydrogen count were high, the support still 
was 89%. When the values for the carbon 
count, half-life of yeast and half-life of E. 
coli were high, the supports were 88%. Full 
details of all rules have been presented in 
Table 1. 
 
Tree induction 

 When decision tree and ID3 models with 
gain ratio, information gain, gini index or 
accuracy criteria were run, a simple decision 
tree with a depth of 1 and total accuracy of 
18.03% ± 5.77%, 14.47% ± 6.10%, 17.20% 
± 6.46% or 15.38% ± 8.24%, respectively 
were generated. The most important feature 
used to build the tree in all models was the 
count of Cys-Ile. 

 When decision tree was run on 
numerical variables with gain ration, 
information gain, gini index and accuracy 
criteria, trees with depths of 6, 9, 11 and 10, 
total accuracy of 35.56% ± 11.37%, 25.83% 
± 8.83%, 12.17% ± 12.17% and 30.69% ± 
9.97% and precision 60.00% ± 10.81%, 75% 
± 11.86, 75% ± 10.53% and 100% were 
created, respectively. The most important 
features used to build the trees were the 
frequency of His-Ile, weight, and the 
frequency of nitrogen and the Asp-Lys 
count. A full detail of this tree has been 
presented in Fig. 2. 

 ID3 (on numerical variables) generated a 
decision tree with a depth of 13 and 
accuracy of 29.68% ± 18.03% and class 
precision of 75%, when criterion were set to 

gain ratio. The most important feature used 
to build the tree was the frequency of Leu-
Arg. When it was run on information gain 
criterion, a tree with a depth of 9, accuracy 
of 27.22% ± 16.73% and class precision of 
71.42% was generated. Protein weight was 
the most important attribute to build the tree. 
Gini index criterion created a complex tree 
with a depth of 12 and accuracy of 25.83% ± 
11.29% and class precision of 100%. The 
frequency of nitrogen was the main attribute. 
A complex tree with a depth of 45 and 
accuracy of 21.11% ± 14.35% and class 
precision of 100% was generated when ID3 
criterion was set to accuracy and N-terminal 
amino acid was chosen as the most 
important protein feature. 

 C5.0 model generated a decision tree 
with a depth of 13 and cross-validation of 
33.2 ± 3.7. The most important feature used 
to build the tree was the frequency of Arg-
Arg. 

 When C&RT node was run on numerical 
data, the tree with a depth of 5 based on the 
frequency of Gln was generated. A tree with 
the same depth created with the Quest model 
and the frequency of Gly-Met was the most 
important feature. 

 When the CHAID model was applied to 
the data with and without feature selection, a 
tree with a depth of 5 was generated on the 
frequency of Ala-Arg attribute. The Asp 
count, the frequency of Phe-His and the Trp 
count were the most important protein 
features used by Simple Vote (Random 
Forest), decision Stump and random tree
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Fig. 2: Decision tree induced by decision tree algorithm (gain ratio criterion) run on numerical 
variables 
 
algorithms to build the trees. 
 
Rule induction 

 The frequency of nitrogen and the 
frequency of Ile-Met were selected as the 
most important features when rule induction 
(with information gain and accuracy criteria) 
were run on discretized dataset. But when 
the same models were run on numerical 
data, the frequency of nitrogen and the Gln 
count were the most important feature to 
build the rules (Table 1). 

 GRI node analysis created 100 rules 
with 85 valid transactions with minimum 
and maximum support of 12.94 and 17.65%, 
respectively. Maximum confidence reached 
100% and minimum confidence decreased to 
93.33%. When feature selection was used, 
minimum support, maximum support, 
maximum confidence, and minimum 
confidence changed to 11.67, 22.35, 100, 
and 84.21%, respectively. The highest 
confidence in without feature selection 
filtering occurred when the Gly count was 
less than 0.032, the frequency of Asp-Gln 

was less than 0.002 and the frequency of 
Lys-Ala was less than 0.004; while the same 
confidence with feature selection modeling 
occurred when the frequency of Ser-Arg, the 
frequency of Val-Ala and the frequency of 
Glu-Ala were less than 0.002, 0.004 and 
0.008, respectively. 
 
Clustering models 

 In K-Means model, 19 records were put 
into the first cluster and 22, 31, 10, and 3 
records were put into the second, third, 
fourth, and fifth clusters, respectively, with a 
starting iteration of 6.23. When the K-Means 
model was applied on the dataset with 
feature selection filtering, again five clusters 
(with a starting iteration of 3.19) were 
generated, with 35, 19, 20, 5, and 6 recorded 
in each cluster, respectively. 

 Two Step cluster model clustered 
records into two groups with 35 and 50 
records in each cluster, respectively. Only 
two clusters (with 19 and 66 records in each 
cluster) were created for the dataset filtered 
using feature selection criteria. 
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Fig. 3: Phylogenic tree of various prolactin hormones studied in the paper. The numbers represent 
prolactin protein accession number 
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 A phylogenic tree for all prolactin 
hormone sequences generated by MEGA 4 
Software, shown in Fig. 3. 
 
Discussion 
 

 Here we extracted FASTA sequences of 
all reviewed prolactin hormones from Swiss-
Prot protein databank. The reviewed 
proteins are those sequences which have 
been reviewed and verified by experts so 
they are original and not duplicated. 
Although the length and the weight of 
prolactin hormones were similar, the 
modeling applied here showed their protein 
attributes are not similar and modeling 
techniques can be used to categorize them. 
This is an important point which underlines 
previous assumptions that prolactin, growth 
hormone and somatolactin, together with the 
mammalian placental lactogen constitute a 
gene family of hormones with similar gene 
structure. These hormones are believed to 
have evolved from a common ancestral gene 
through several rounds of gene duplication 
and subsequent divergence (Huang et al., 
2009). The results of this study showed even 
prolactin hormones may not share exactly all 
protein features, and this point can be used 
as a pivotal point to concentrate on for more 
investigation in future. 

 Data mining tools perform data analysis 
and may uncover important data patterns, 
contributing greatly to business strategies, 
knowledge bases, and scientific research 
(Pham, 2008). The widening gap between 
data and information calls for a systemic 
development of data mining tools that will 
turn data tombs into golden nuggets of 
knowledge. To date, various methods have 
been employed to study the protein features 
in various animals (see introduction); here 
we applied different modeling techniques 
(screening, clustering, and item set mining 
and decision tree) to study more than 899 
features of prolactin hormones in an attempt 
to determine species-related protein 
attributes. 

 The numbers of important protein 
attributes determined by attribute weighting 
models (weight higher than 0.07) were 
different as each model uses special 
statistical procedures to determine the most 
important features. Comparing the models’ 

accuracy and performance, the best figure is 
obtained by gain ratio model. As shown in 
the results section, the frequency and the 
count of dipeptides play major roles in 
attribute weighting models; confirming the 
importance of dipeptides bonds in forming 
the proteins (Abdelmagid and Too, 2008). 
The frequency of Lys-Asp and the frequency 
of Phe-His were chosen by 60% of attribute 
weighting algorithms and the frequency of 
Ser-Asp, the count of Lys-Asp, the 
frequency of Leu-Arg, the frequency of Pro-
Met, the count of Glu and the count of Phe-
His were selected by 50% of attribute 
weighting models as important features. 

 Item set mining is a data analysis 
method that was originally developed for 
market basket analysis (Rotter et al., 2010). 
It aims at finding regularities in the shopping 
behavior of the customers of supermarkets, 
mail-order companies and online shops. In 
particular, it tries to identify sets of products 
that are frequently bought together. Once 
identified, such sets of associated products 
may be exploited to optimize the 
organization of the products on the shelves 
of a supermarket or on the pages of a mail-
order catalog or web shop, may be used to 
suggest other products a customer could be 
interested in, or may give hints which 
products may be conveniently bundled. As a 
powerful method, it was quickly employed 
as a suitable tool in other data mining 
applications as well as bioinformatics 
modeling. It is acceptable in item set mining 
algorithms to have a large number of rules 
which should be refined and trimmed to just 
a few important rules as done here. The type 
of data was changed to binominal as 
requested by the model, setting the criteria 
to low, mid and high (>0.3, between 0.3 and 
0.5 and higher than 0.5, respectively). 
Therefore, for each attribute three possible 
conditions (low, mid or high) were available 
and, at any time, just one condition will be 
true and two will be false. The numbers of 
low attributes were dominant in the dataset 
as the frequencies of attributes were 
generally less than 0.3; so to remove this 
dominant effect, we discard the low value in 
another attempt to see the real effects of mid 
and high values. Although the numbers of 
rules decreased to just 123 rules, the most 
important features forming the rules were 
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similar, showing and confirming the 
importance of data cleaning to reduce the 
burden on processing facilities. 

 Various decision tree models were 
performed on datasets with and without 
feature selection criteria. In some of them 
(such as ID3) a very simple tree was created 
with just one attribute and the count of Cys-
Ile was used to build the tree, while in other 
models trees with more branches and depths 
were created. It would be reasonable to see 
some simple decision trees as prolactin 
hormones come from an ancestral gene, and 
so are in a similar rank. But in some 
decision tree models such as decision tree 
algorithm, the computation criteria were 
different and more complicated trees were 
generated. In all tree induction models the 
frequencies or the counts of dipeptides were 
the main protein attributes to build the tree, 
although the numbers and the types were 
different. The nitrogen count and weight of 
prolactin hormones in a few models were 
selected as the most important protein 
features. To our knowledge, this is the first 
study in this field to employ tree induction 
models to determine the specific structural 
properties of hormones and no such data was 
found on prolactin hormones. The findings 
confirmed that structural features of 
proteins, and especially hormones, may be 
used as important features in classifying 
hormones and opens up a new vista in this 
filed. 

 The results showed that various 
bioinformatics tools and modeling facilities 
can be used to identify the species 
specificity of prolactin hormones in animals 
with an acceptable precision rate. To our 
knowledge, for the first time we have shown 
that structural features such as primary or 
secondary protein attributes play an 
important role in prolactin hormones 
classification. This is also the first report on 
the importance of dipeptides’ counts and 
frequencies in prolactin classification, but 
recently a few reports have emerged 
showing the importance of these features in 
other proteins’ clustering (Ebrahimi et al., 
2009; Bijanzadeh et al., 2010; Ebrahimi and 
Ebrahimie, 2010). It has also been reported 
here that feature selection or attribute 
weighting can be used to select the most 
important protein attributes and to reduce 

the burden of processing. The new findings 
open up new windows in understanding the 
characters’ of prolactin hormones and also 
paves the way to engineer more efficient 
hormones in the lab by using various 
mutagenesis tools such as site directed 
mutagenesis. 
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