Ananda Chitra, M; Jayanthy, C and Nagarajan, B (2015). Detection and sequence analysis of accessory gene regulator genes of
Staphylococcus pseudintermedius isolates. Vet. World. 8: 902-907.
http://dx.doi.org/10. 14202/vetworld.902-907.
Bachoual, R; Ouabdesselam, S; Mory, F; Lascols, C; Soussy, CJ and Tankovic, J (2001). Single or double mutational alterations of
gyrA associated with fluoroquinolone resistance in
Campylobacter jejuni and
Campylobacter coli. Microb. Drug Resist., 7: 257-261.
https://doi.org/10.1089/10766290152652800.
Byrd, JA; Hargis, BM; Caldwell, DJ; Bailey, RH; Herron, KL; McReynolds, JL; Brewer, RL; Anderson, RC; Bischoff, KM and Callaway, TR (2001). Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on
Salmonella and
Campylobacter contamination of broilers. Poult. Sci., 80: 278-283.
https://doi.org/10.1093/ps/80.3.278.
Caffrey, N; Agunos, A; Gow, S; Liljebjelke, K; Waldner, CL; Mainali, C and Checkley, SL (2021). A cross-sectional study of the prevalence factors associated with fluoroquinolone resistant
Campylobacter jejuni in broiler flocks in Canada. Prev. Vet. Med., 186: 105-164.
http://dx.doi.org/10.1016/j.prevetmed.2020.105164.
CLSI (2020). Performance standards for antimicrobial susceptibility testing CLSI supplement M100. (30th Edn.), Clinical and Laboratory Standards Institute, Wayne, PA.
Datta, S; Niwa, H and Itoh, K (2003). Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J. Med. Microbiol., 52: 345-348.
Denis, M; Nagard, B; Rose, V; Bourgoin, K; Cutimbo, M and Kerouanton, A (2017). No clear differences between organic or conventional pig farms in the genetic diversity or virulence of Campylobacter coli isolates. Front. Microbiol., 8: 1016.
Dingle, KE; Colles, FM; Wareing, DRA; Ure, R; Fox, AJ; Bolton, FE; Bootsma, HJ; Willems, RJL; Urwin, R and Maiden, MCJ (2001). Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol., 39: 14-23.
Engberg, J; Aarestrup, FM; Taylor, DE; Gerner-Smidt, P and Nachamkin, I (2001). Quinolone and macrolide resistance in
Campylobacter jejuni and
C. coli: resistance mechanisms and trends in human isolates. Emerg. Infect. Dis., 7: 24-34. doi:
10.3201/eid0701.010104.
Gahamanyi, N; Song, DG; Yoon, KY; Mboera, LE; Matee, MI; Mutangana, D; Amachawadi, RG; Komba, EV and Pan, CH (2021). Antimicrobial resistance profiles, virulence genes, and genetic diversity of thermophilic
Campylobacter species isolated from a layer poultry farm in Korea. Front. Microbiol., 12: 554.
https://doi.org/10. 3389/fmicb.2021.622275.
García-Sánchez, L; Melero, B; Diez, AM; Jaime, I; Canepa, A and Rovira, J (2020). Genotyping, virulence genes and antimicrobial resistance of
Campylobacter spp. isolated during two seasonal periods in Spanish poultry farms. Prev. Vet. Med., 176: 104935.
https://doi.org/10.1016/j. prevetmed.2020.104935.
Gonzalez, I; Grant, KA; Richardson, PT; Park, SF and Collins, MD (1997). Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative virulence determinant. J. Clin. Microbiol., 35: 759-763.
Goon, S; Kelly, JF; Logan, SM; Ewing, CP and Guerry, P (2003). Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol., 50: 659-671.
Jesse, TW; Englen, MD; Pittenger-Alley, LG and Fedorka-Cray, PJ (2006). Two distinct mutations in
gyrA lead to ciprofloxacin and nalidixic acid resistance in
Campylobacter coli and
Campylobacter jejuni isolated from chickens and beef cattle. J. Appl. Microbiol., 100: 682-688.
https://doi.org/10.1111/j.1365-2672.2005.02796.
Jolley, KA; Bray, JE and Maiden, MCJ (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res., 3: 124. doi: 10.12688/wellcomeopenres.14826. 1.
Kashoma, IP; Kumar, A; Sanad, YM; Gebreyes, W; Kazwala, RR; Garabed, R and Rajashekara, G (2014). Phenotypic and genotypic diversity of thermophilic
Campylobacter spp. in commercial turkey flocks: a longitudinal study. Foodborne Pathog. Dis., 11: 850-860.
https://doi.org/10.1089/fpd.2014.1794.
Khan, JA; Rathore, RS; Abulreesh, HH; Qais, FA and Ahmad, I (2018). Prevalence and antibiotic resistance profiles of
Campylobacter jejuni isolated from poultry meat and related samples at retail shops in Northern India. Foodborne Pathog. Dis., 15: 218-225.
https://doi.org/10. 1089/fpd.2017.2344.
Konkel, ME; Gray, SA; Kim, BJ; Garvis, SG and Yoon, J (1999). Identification of the enteropathogens Campylobacter jejuni and Campylobacter coli based on the cadF virulence gene and its product. J. Clin. Microbiol., 37: 510-517.
Koolman, L; Whyte, P; Burgess, C and Bolton, D (2015). Distribution of virulence-associated genes in a selection of Campylobacter isolates. Foodborne Pathog. Dis., 12: 424-432. http://dx.doi.org/10.1089/fpd.2014.1883.
Kuana, SL; Santos, LR; Rodrigues, LB; Borsoi, A; Moraes, HLS; Salle, CTP and Nascimento, VP (2008). Occurrence and characterization of
Campylobacter in the Brazilian production and processing of broilers. Avian Dis., 52: 680-684.
https://doi.org/10.1637/8296-032608-Reg.1.
Ladely, SR; Berrang, ME; Meinersmann, RJ and Cox, NA (2017).
Campylobacter multi-locus sequence types and antimicrobial susceptibility of broiler cecal isolates: A two year study of 143 commercial flocks. J. Food Saf., 37: e12366.
https://doi.org/10.1111/jfs.12366.
Livestock Census of India (2019). Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India, Krishi Bhavan, New Delhi.
Mossong, J; Mughini-Gras, L; Penny, C; Devaux, A; Olinger, C; Losch, S; Cauchie, HM; van Pelt, W and Ragimbeau, C (2016). Human campylobacteriosis in Luxembourg, 2010-2013: a case-control study combined with multilocus sequence typing for source attribution and risk factor analysis. Sci. Rep., 6: 1-12.
https://doi.org/ 10.1038/srep20939.
Musgrove, MT; Berrang, ME; Byrd, JA; Stern, NJ and Cox, NA (2001). Detection of
Campylobacter spp. in ceca and crops with and without enrichment. Poult. Sci., 80: 825-828.
https://doi.org/10.1093/ps/80.6.825.
NARMS (National Antimicrobial Resistance Monitoring System) (2020). U.S. Department of Health and Human Services, Food and Drug Administration. Rockville, MD. https://www.fda.gov/animal-veterinary/antimicrobial-resistance/nationalantimicrobial-resistance-monitoring-system.
Romero, MR and Cook, N (2018). A rapid LAMP-based method for screening poultry samples for Campylobacter without enrichment. Front. Microbiol., 9: 2401. https://doi. org/10.3389/fmicb.2018.02401.
Rossler, E; Olivero, C; Soto, LP; Frizzo, LS; Zimmermann, J; Rosmini, MR; Sequeira, GJ; Signorini, ML and Zbrun, MV (2020). Prevalence, genotypic diversity and detection of virulence genes in thermotolerant
Campylobacter at different stages of the poultry meat supply chain. Int. J. Food Microbiol., 326: 108641.
https://doi.org/10.1016/j.ijfoodmicro.2020.108641.
Sahin, O; Zhang, Q; Meitzler, JC; Harr, BS; Morishita, TY and Mohan, R (2001). Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl. Environ. Microbiol., 67: 3951-3957. http://dx.doi.org/10.1128/aem.67.9.3951-3957.2001.
Sallam, KI (2007). Prevalence of Campylobacter in chicken and chicken by-products retailed in Sapporo area, Hokkaido, Japan. Food Control. 18: 1113-1120. http://dx.doi.org/10.1016/j.foodcont.2006.07.005.
Tang, Y; Jiang, Q; Tang, H; Wang, Z; Yin, Y; Ren, F; Kong, L; Xinan Jiao, X and Huang, J (2020). Characterization and prevalence of Campylobacter spp. from broiler chicken rearing period to the slaughtering process in eastern China. Front. Vet. Sci., 7: 227. http://dx.doi.org/10.3389/fvets.2020.00227.
Toplak, N; Kovač, M; Piskernik, S; Možina, SS and Jeršek, B (2012). Detection and quantification of
Campylobacter jejuni and
Campylobacter coli using real-time multiplex PCR. J
. Appl. Microbiol., 112: 752-764.
http://dx.doi.org/ 10.1111/j.1365-2672.2012.05235.x.
Torralbo, A; Borge, C; García-Bocanegra, I; Méric, G; Perea, A and Carbonero, A (2015). Higher resistance of
Campylobacter coli compared to
Campylobacter jejuni at chicken slaughterhouse. Comp. Immunol. Microbiol. Infect. Dis.,
39: 47-52.
http://dx.doi.org/10.1016/j.cimid. 2015.02.003.
Ugarte-Ruiz, M; Gomez-Barrero, S; Porrero, MC; lvarez, JA; Garci, M; Comeron, MC; Wassenaar, TM and Dominguez, L (2012). Evaluation of four protocols for the detection and isolation of thermophilic Campylobacter from different matrices. J. Appl. Microbiol., 113: 200-208. doi: 10.1111/j.1365-2672.2012.05323.x.
Vinueza-Burgos, C; Wautier, M; Martiny, D; Cisneros, M; Van Damme, I and De Zutter, L (2017). Prevalence, antimicrobial resistance and genetic diversity of
Campylobacter coli and
Campylobacter jejuni in Ecuadorian broilers at slaughter age. Poult. Sci., 96: 2366-2374.
http://dx.doi.org/10.3382/ps/pew487.
Walker, LJ; Wallace, RL; Smith, JJ; Graham, T; Saputra, T; Symes, S; Stylianopoulos, A; Polkinghorne, BG; Kirk, MD and Glass, K (2019). Prevalence of Campylobacter coli and Campylobacter jejuni in retail chicken, beef, lamb, and pork products in three Australian states. J. Food Prot., 82: 2126-2134. doi: 10.4315/0362-028X.JFP-19-146.
Wang, G; Clifford, GC; Tracy, M; Pucknell, C; Barton, C; Price, L; Woodward, DL and Rodgers, FG (2002). Colony Multiplex PCR assay for identification and differentiation of
Campylobacter jejuni,
C. coli,
C. lari,
C. upsaliensis, and
C. fetus subsp.
fetus. J. Clin. Microbiol.,
40: 4744-4747.
http://dx.doi.org/10.1128/jcm.40.12.4744-4747.2002.
Wangroongsarb, P; Cheunban, N; Jittaprasatsin, C; Kamthalang, T; Saipradit, N; Chaichana, P; Chaiwat,
P; Sittiporn, P and Orapan, S (2021). Prevalence and antimicrobial susceptibility of
Campylobacter isolated from retail chickens in Thailand. Int. J. Food Microbiol., 339: 109017.
http://dx.doi.org/10.1016/j.ijfoodmicro.2020. 109017.
Wieczorek, K; Bocian, Ł and Osek, J (2020). Prevalence and antimicrobial resistance of
Campylobacter isolated from carcasses of chickens slaughtered in Poland–a retrospective study. Food Control. 11: 107159.
http://dx.doi.org/10.1016/ j.foodcont.2020.107159.
Wysok, B; Wojtacka, J and Kivistö, R (2020). Pathogenicity of
Campylobacter strains of poultry and human origin from Poland. Int. J. Food Microbiol., 334: 108830.
https://doi. org/10.1016/j.ijfoodmicro.2020.108830.
Zheng, J; Meng, J; Zhao, S; Singh, R and Song, W (2006). Adherence to and invasion of human intestinal epithelial cells by Campylobacter jejuni and Campylobacter coli isolates from retail meat products. J. Food Prot., 69: 768-774.