Adams, RP and Sparkman, OD (2007). Review of identification of essential oil components by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom., 18: 803-806.
Amidi, M; Mastrobattista, E; Jiskoot, W and Hennink, WE (2010). Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug. Deliv. Rev., 62: 59-82.
Amjadi, S; Emaminia, S; Davudian, SH; Pourmohammad, S; Hamishehkar, H and Roufegarinejad, L (2019). Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr. Polym., 216: 376-384. doi.org/10.1016/j.carbpol.2019.03.062.
ASTM International (2007). Standard test methods for tensile properties of thin plastic sheeting. D882-02. Annual book of ASTM Standards. 14.02. United States.
Bhardwaj, A; Alam, T and Talwar, N (2019). Recent advances in active packaging of agri-food products: a review. J. Postharvest Technol., 07: 33-62.
Cao, X; Chen, Y; Chang, PR; Stumborg, M and Huneault, MA (2008). Green composites reinforced with hemp nanocrystals in plasticized starch. J. Appl. Polym. Sci., 109: 3804-3810.
Chaichi, M; Hashemi, M; Badii, F and Mohammadi, A (2017). Preparation and characterization of a novel bio nanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr. Polym., 157: 167-175.
Chanphai, P and Tajmir-Riahi, HA (2018). Conjugation of tea catechins with chitosan nanoparticles. Food Hydrocoll., 84: 561-570.
FICCI (Federation of Indian Chambers of Commerce and Industry) (2016). A report on plastics industry. In: Proceedings of the 2nd National Conference on Plastic Packaging-the Sustainable Choice, New Delhi.
Frone, AN; Berlioz, S; Chailan, JF and Panaitescu, DM (2013). Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr. Polym., 91: 377-384.
Jalaei, J; Fazeli, M; Rajaian, H and Shekarforoush, SS (2014). In vitro antibacterial effect of wasp (Vespa orientalis) venom. J. Venom. Anim. Toxins Incl. Trop. Dis., 20: 1-6. doi: 10.1186/1678-9199-20-22.
Jeevahan, J and Chandrasekaran, M (2019). Nanoedible films for food packaging: a review. J. Mater Sci., 54: 12290-12318.
Kanagaraj, S; Varanda, FR; Zhiltsova, TV; Oliveira, MS and Simoes, JAO (2007). Mechanical properties of high-density polyethylene/carbon nanotube composites. Compos. Sci. Technol., 67: 3071-3077.
Koo, JH (2019). Polymer nanocomposites: Processing, characterization, and applications. 2nd Edn., New York, McGraw-Hill Education. P: 272.
Kumar, MNVR (2000). A review of chitin and chitosan applications. React. Funct. Polym., 46: 1-27.
Lavorgna, M; Piscitelli, F; Mangiacapra, P and Buonocore, GG (2010). Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohyd. Polym., 82: 291-298.
Ma, X; Chang, PR; Yang, J and Yu, J (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohyd. Polym., 75: 472-478.
Ma, J; Zhu, W; Tian, Y and Wang, Z (2016). Preparation of zinc oxide-starch nanocomposite and its application on coating. Nanoscale Res. Lett., 11: 1-9. Doi: 10.1186/s11671-016-1404-y.
Mandal, A and Chakrabarty, D (2015). Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly (vinyl alcohol) and polyacrylamide composite films. Carbohyd. Polym., 134: 240-250.
Mohamad, NA and Fahmy, MM (2012). Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int. J. Mol. Sci., 13: 11194-11209.
Morales-González, JA; Madrigal-Bujaidar, E; Sánchez-Gutiérrez, M; Izquierdo-Vega, JA; Valadez-Vega, MC; Álvarez-González, I; Morales-González, A and Madrigal-Santillán, E (2019). Garlic (Allium sativum): A brief review of its antigenotoxic effects. Foods. 8: 343. doi: 10.3390/foods8080343.
Noorbakhsh-Soltani, SM; Zerafat, MM and Sabbaghi, S (2018). A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohyd. Polym., 189: 48-55. doi.org/10.1016/j.carbpol.2018.02.012.
Ozdemir, M and Floros, JD (2004). Active food packaging technologies. Criti. Rev. Food Nutr., 44: 185-193.
Qin, Y; Liu, Y; Yuan, L; Yong, H and Liu, J (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll., 96: 102-111.
Radusin, T; Ristić, IS; Pilić, BM and Novaković, AR (2016). Antimicrobial nanomaterials for food packaging applications. Food Feed Res., 43: 119-126.
Rahimi, R; ValizadehKaji, B; Khadivi, A and Shahrjerdi, I (2019). Effect of chitosan and thymol essential oil on quality maintenance and shelf-life extension of peach fruits cv. ‘Zaferani’. J. Hortic. Postharvest Res., 2: 143-156.
Rattanachaikunsopon, P and Phumkhachorn, P (2009). Shallot (Allium ascalonicum L.) oil: Diallyl sulfide content and antimicrobial activity against food-borne pathogenic bacteria. Afr. J. Microbiol. Res., 3: 747-750.
Ribeiro, MC; Correa, VLR; da Silva, FKL; de Oliveira Neto, JR; Casas, AA; de Menezes, LB and Amara, AC (2018). Improving peptide quantification in chitosan nanoparticles. Int. J. Biol. Macromol., 119: 32-36.
SAS (2013). Proprietary Software Version 9.00. SAS Institute: Cary, NC, USA.
Schiffman, JD and Schauer, CL (2007). One-stepelectrospinning of crosslinked chitosan fibers. Biomacromolecules. 8: 2665-2667.
Seydim, AC and Sarikus, G (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int., 39: 639-644.
Shirdel, M; Tajik, H and Moradi, M (2017). Combined activity of colloid nanosilver and Zataria nultiflora Boiss essential oil mechanism of action and biofilm removal activity. Adv. Pharm. Bull., 7: 621-628.
Silva, F; Domingues, FC and Nerín, C (2018). Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes-based packaging absorbent pads. LWT-Food Sci. Technol., 89: 148-154.
Sun, X; Jia, P; Zhe, T; Bu, T; Liu, Y; Wang, Q and Wang, L (2019). Construction and multifunctionalization of chitosan-based three-phase nano-delivery system. Food Hydrocoll., 96: 402-411.
Turalija, M; Bischof, S; Budimir, A and Gaan, S (2016). Antimicrobial PLA films from environment friendly additives. Compos. B. Eng., 102: 94-99.
van der Lubben, IM; Verhoef, JC; Borchard, G and Junginger, HE (2001). Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci., 14: 201-207.
Vigneshwaran, N; Kumar, S and Kathe, AA (2006). Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology. 17: 5087-5095.
Wei, D; Sun, W; Qian, W; Ye, Y and Ma, X (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res., 344: 2375-2382.
WU, N; ZU, YG and WANG, W (2008). Antimicrobial activities of garlic essential oil. Food Sci., 3: 103-105.
Yang, YN; Lu, KY; Wang, P; Ho, YC; Tsai, ML and Mi, FL (2020). Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydr. Polym., 228: 115370. doi.org/10.1016/j.carbpol.2019.115370.
Yin, MC and Cheng, WS (2003). Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci., 63: 23-28.