ارتباط فیلوژنتیک و پروفایل‌های ژن حدت اشریشیا کلی بیماری‌زای پرندگان و اشریشیا کلی دستگاه ادراری جدا شده از کولی باسیلوز پرندگان و عفونت‌های دستگاه ادراری انسان (UTIs)

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: شواهدی وجود دارد که نشان دهنده ارتباط احتمالی بین اشریشیا کلی بیماری‌زای پرندگان (APEC) و سایر سویه‌های اشریشیا کلی بیماری‌زای خارج روده‌ای (ExPEC) مانند سویه‌های بیماری‌زای دستگاه ادراری انسان می‌باشد. هدف: مطالعه حاضر به منظور ارزیابی ارتباطات فیلوژنتیک و حدت بین 70 سویه APEC و UPEC (35 سویه APEC و 35 UPEC) تهیه شده در شمال ایران که یکی از مراکز اصلی صنعت طیور در کشور است انجام شد. روش کار: واکنش زنجیره‌ای پلیمراز (PCR) و DNA چند شکلی تکثیر شده تصادفی (RAPD) به ترتیب با استفاده از آغازگرهای اختصاصی انجام شد و داده‌ها با استفاده از نرم افزارهای BioNumerics و SPSS مورد تجزیه و تحلیل قرار گرفت. نتایج: شایع‌ترین ژن fliC (6/70%) و به دنبال آن fimH (1/67%) بود اما سویه‌های APEC و UPEC تفاوت‌های فاحش و واضحی در حضور برخی از ژن‌های حدت مانند fliC، hlyD، و sfa1 و گروه فیلوژنتیک غالب در روش‌های انگشت نگاری DNA نشان دادند. نتیجه‌گیری: نتایج تفاوت‌های آشکاری بین سویه‌های APEC و UPEC از نظر فیلوژنتیک و الگوی ژن حدت نشان داد، هرچند APEC‌های جدا شده علیرغم داشتن ژن‌های حدت مانند papC، ibeA، و iss می‌توانند پتانسیل بالایی برای بروز بیماری در انسان‌ها داشته باشند و در جوامع با سطح پایین بهداشت عمومی و صنعت طیور، شیوع خطرناکی ایجاد کنند.

کلیدواژه‌ها

موضوعات


Afshari, A; Rad, M; Seifi, HA and Ghazvini, K (2016). Genetic variation among Escherichia coli isolates from human and calves by using RAPD PCR. Iran. J. Vet. Med., 10: 33-40.
Aslam, M; Greer, GG; Nattress, FM; Gill, CO and McMullen, LM (2004). Genetic diversity of Escherichia coli recovered from the oral cavity of beef cattle and their relatedness to faecal E. coli. Lett. Appl. Microbiol., 39: 523-527.
Bakhshi, M; Zandi, H; Bafghi, MF; Astani, A; Ranjbar, VR and Vakili, M (2020). A survey for phylogenetic relationship; presence of virulence genes and antibiotic resistance patterns of avian pathogenic and uropathogenic Escherichia coli isolated from poultry and humans in Yazd, Iran. Gene Rep., 20: 100725.
Dadi, BR; Abebe, T; Zhang, L; Mihret, A; Abebe, W and Amogne, W (2020). Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect. Dis., 20: 108.
Germon, P; Chen, YH; He, L; Blanco, JE; Bree, A; Schouler, C; Huang, SH and Moulin-Schouleur, M (2005). ibeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology. 151: 1179-1186.
Golshani, M and Buozari, S (2017). A review of brucellosis in Iran: epidemiology, risk factors, diagnosis, control, and prevention. Iran. Biomed. J., 21: 349-359.
Huang, SH and Jong, AY (2001). Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier: MicroReview. Cell. Microbiol., 3: 277-287.
Jafari, A; Aslani, MM and Bouzari, S (2012). Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran. J. Microbial., 4: 102-117.
Johnson, JR and Stell, AL (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis., 181: 261-272.
Jørgensen, SL; Stegger, M; Kudirkiene, E; Lilje, B; Poulsen, LL; Ronco, T; Dos Santos, TP; Kiil, K; Bisgaard, M; Pedersen, K and Nolan, LK (2019). Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. Msphere. 4: e00333-18.
Kazemnia, A; Ahmadi, M and Dilmaghani, M (2014). Antibiotic resistance pattern of different Escherichia coli phylogenetic groups isolated from human urinary tract infection and avian colibacillosis. Iran. Biomed. J., 18: 219-224.
Lai, YM; Norgainathai, R; Zaw, MT and Lin, Z (2015). A new primer set for detection of fimH gene in Escherichia coli isolates. Int. J. Collab. Res. Intern. Med. Public Health. 7: 65-71.
Le Bouguenec, C; Archambaud, M and Labigne, A (1992). Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol., 30: 1189-1193.
Luna-Pineda, VM; Ochoa, SA; Cruz-Córdova, A; Cázares-Domínguez, V; Reyes-Grajeda, JP; Flores-Oropeza, MA; Arellano-Galindo, J; Castro-Hernández, R; Flores-Encarnación, M; Ramírez-Vargas, A and Flores-García, HJ (2018). Features of urinary Escherichia coli isolated from children with complicated and uncomplicated urinary tract infections in Mexico. PloS One. 13: e0204934.
Marrs, CF; Zhang, L and Foxman, B (2005). Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol. Lett., 252: 183-190.
Matsuda, K; Chaudhari, AA and Lee, JH (2010). Avian colibacillosis caused by an intestinal pathogenic Escherichia coli isolate from calf diarrhea. Res. Vet. Sci., 89: 150-152.
Mellata, M; Johnson, JR and Curtiss III, R (2018). Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses Public Health. 65: 103-113.
Mirsalehian, A and Dalvand, M (2018). History of bacterial infection diseases in Iran. Iran. J. Med. Microbiol., 12: 230-238.
Mohammadzadeh, M; Tavakoli, M; Yaslianifard, S; Asadi, E; Golmohammadi, R and Mirnejad, R (2019). Genetic diversity and antibiotic susceptibility of uropathogenic Escherichia coli isolates from kidney transplant recipients. Infect. Drug Resist., 12: 1795-1803.
Mortensen, S; Johansen, AE; Thøfner, I; Christensen, JP; Pors, SE; Fresno, AH; Møller-Jensen, J and Olsen, JE (2019). Infectious potential of human derived uropathogenic Escherichia coli UTI89 in the reproductive tract of laying hens. Vet. Microbial., 239: 108445.
Nkukwana, TT (2018). Global poultry production: Current impact and future outlook on the South African poultry industry. South. African J. Anim. Sci., 48: 869-884.
Ochoa, SA; Cruz-Córdova, A; Luna-Pineda, VM; Reyes-Grajeda, JP; Cázares-Domínguez, V; Escalona, G and Xicohtencatl-Cortes, J (2016). Multidrug- and extensively drug-resistant uropathogenic Escherichia coli clinical strains: phylogenetic groups widely associated with integrons maintain high genetic diversity. Front. Microbiol., 7: 2042.
Rocha, AC; Rocha, SL; Lima-Rosa, CA; Souza, GF; Moraes, HL; Salle, FO; Moraes, LB and Salle, CT (2008). Genes associated with pathogenicity of avian Escherichia coli (APEC) isolated from respiratory cases of poultry. Pesqui. Vet. Bras., 28: 183-186.
Rodriguez-Siek, KE; Giddings, CW; Doetkott, C; Johnson, TJ and Nolan, LK (2005). Characterizing the APEC pathotype. Vet. Res., 36: 241-256.
Sarowska, J; Futoma-Koloch, B; Jama-Kmiecik, A; Frej-Madrzak, M; Ksiazczyk, M; Bugla-Ploskonska, G and Choroszy-Krol, I (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog., 11: 1-16.
Stromberg, ZR; Johnson, JR; Fairbrother, JM; Kilbourne, J; Van Goor, A; Curtiss 3rd, R and Mellata, M (2017). Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PloS One. 12: e0180599.
Subedi, M; Luitel, H; Devkota, B; Bhattarai, RK; Phuyal, S; Panthi, P; Shrestha, A and Chaudhary, DK (2018). Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res., 14: 1-6.
Terlizzi, ME; Gribaudo, G and Maffei, ME (2017). Uropathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol., 8: 1566.
Wahyono, ND and Utami, MMD (2018). A review of the poultry meat production industry for food safety in Indonesia. In Journal of Physics: Conference Series. 953: 012125.
Xicohtencatl-Cortes, J; Cruz-Cordova, A; Cazares-Dominguez, V; Escalona-Venegas, G; Zavala-Vega, S; Arellano-Galindo, J; Romo-Castillo, M; Hernandez-Castro, R; Ochoa, SA and Luna-Pineda, VM (2019). Uropathogenic Escherichia coli strains harboring tosA gene were associated to high virulence genes and a multidrug-resistant profile. Microb. Pathog., 134: 103593.
Xu, X; Sun, Q and Zhao, L (2019). Virulence factors and antibiotic resistance of avian pathogenic Escherichia coli in Eastern China. J. Vet. Res., 63: 317-320.
Zhao, L; Gao, S; Huan, H; Xu, X; Zhu, X; Yang, W; Gao, Q and Liu, X (2009). Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology. 155: 1634-1644.