مدل سازی سه بعدی و تحلیل کمی پارامترهای استخوان‌های بلند در خرگوش با استفاده از مقطع نگاری کامپیوتری میکرو

نوع مقاله : مقاله کوتاه

نویسندگان

چکیده

پیشینه: مقطع نگاری کامپیوتری میکرو (µCT)، یک روش تصویر برداری مدرن، اطلاعات دقیقی را از ریخت‌شناسی استخوان مدل‌های حیوانی کوچک فراهم می‌کند. هدف: اهداف 1) تولید مدل‌های سه بعدی (3D) از تصاویر µCT استخوان ران و درشت‌نی خرگوش‌های نیوزلندی، و 2) ارزیابی و مقایسه نتایج ریخت‌سنجی و حجم‌سنجی در بین جنس‌ها و همچنین طرف چپ و راست بدن هستند. روش کار: در مجموع از 20 خرگوش بالغ نیوزلندی (10 ماده، 10 نر، سن 12 تا 18 هفته، وزن 5/2 تا 3 کیلوگرم) در این مطالعه استفاده شد. با استفاده از تصاویر مقطعی µCT و برنامه برش‌دهنده سه بعدی، مدل‌های بازسازی شده سه بعدی استخوان‌های ران و درشت‌نی خرگوش‌ها ایجاد شدند. ساختارهای آناتومیکی بر روی این مدل‌های سه بعدی استخوان تعیین شدند. پس از آن، پارامترهای ریخت‌سنجی مانند طول، ضخامت و عرض قسمت‌های مختلف استخوان‌ها با حجم و مقادیر نسبت حجم استخوان کورتیکال، ترابکولار و حفره مدولاری محاسبه شدند. نتایج: مشخص شد که اصطلاح تعامل جانبی * جنسیت در سنجش قطر دیافیز استخوان ران (FDD)، قطر دیافیز داخلی استخوان ران (IFDD)، قطر سر استخوان ران (FHD)، قطر دیافیز استخوان درشت‌نی (TDD)، عرض دیستال درشت‌نی (TDW) و عرض بالایی استخوان درشت‌نی (TPW) از نظر آماری معنی‌دار است (p < 0.001). اصطلاح تعامل جانبی * جنسیت در مقادیر کسری حجمی و حجمی استخوان کورتیکال، ترابکولار و حفره مدولار از نظر آماری معنی‌دار نبود (P>0.05). نتیجه‌گیری: به نظر می‌رسد که این مطالعه به مطالعات تجربی ارتوپدی خرگوش برای استخوان‌های ران و درشت‌نی کمک خواهد کرد و دیدگاه مدرنی را در زمینه آناتومی دامپزشکی فراهم می‌کند.

کلیدواژه‌ها

موضوعات


Ajayi, IE; Shawulu, JC; Zachariya, TS; Ahmed, S and Adah, BM (2012). Osteomorphometry of the bones of the thigh, crus and foot in the New Zealand white rabbit (Oryctolagus cuniculus). Ital. J. Anat. Embryol., 117: 125-134.
Araujo, FAP; Sesoko, NF; Rahal, SC; Teixeira, CR; Müller, TR and Machado, MRF (2013). Bone morphology of the hind limbs in two caviomorph rodents. Anat. Histol. Embryol., 42: 114-123.
Bagi, CM; Berryman, E and Moalli, MR (2011). Comparative bone anatomy of commonly used laboratory animals: Implications for drug discovery. Comp. Med., 61:
76-85.
Bouxsein, ML; Boyd, SK; Christiansen, BA; Guldberg, RE; Jepsen, KJ and Müller, R (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner Res., 25: 1468-1486.
Brewer, NR (2006). Biology of the rabbit. J. Am. Assoc. Lab. Anim. Sci., 45: 8-24.
Estai, M and Bunt, S (2016). Best teaching practices in anatomy education: A critical review. Ann. Anat., 208: 151-157.
Fedorov, A; Beichel, R; Kalpathy-Cramer, J; Finet, J; Fillion-Robin, JC; Pujol, S; Bauer, C; Jennings, D; Fennessy, F; Sonka, M; Buatti, J; Aylward, S; Miller, JV; Pieper, S and Kikinis, R (2012). 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imagin., 30: 1323-1341.
Hoechel, S; Schulz, G and Gerbl, MM (2015). Insight into the 3D-trabecular architecture of the human patella. Ann. Anat., 200: 98-104.
Jiang, Y; Zhao, J; White, DL and Genant, HK (2000). Micro CT and Micro MR imaging of 3D architecture of animal skeleton. J. Musculoskel. Neuron. Interact., 1: 45-51.
Kim, M; Huh, KH; Yi, WJ; Heo, MS; Lee, SS and Choi, SC (2012). Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT. Imaging Sci. Dent., 42: 25-33.
Kubikova, T; Bartos, M; Juhas, S; Suchy, T; Sauerova, P; Kalbacova, MH and Tonar, Z (2018). Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation. Ann. Anat., 220: 85-96.
Pazvant, G and Kahvecioglu, KO (2009). Studies on homotypic variation of forelimb and hindlimb long bones of rabbits. J. Fac. Vet. Med. Istanbul. Univ., 35: 23-29.
Pazzaglia, UE; Zarattini, G; Giacomini, D; Rodella, L; Menti, AM and Feltrin, G (2010). Morphometric analysis of the canal system of cortical bone: an experimental study in the rabbit femur carried out with standard histology and micro-CT. Anat. Histol. Embryol., 39: 17-26.
Savio, G; Baroni, T; Concheri, G; Baroni, E; Meneghello, R; Longo, F and Isola, M (2016). Computation of femoral canine morphometric parameters in three-dimensional geometrical models. Vet. Surg., 45: 987-995.
Stull, KE; Tise, ML; Ali, Z and Fowler, DR (2014). Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Sci. Int., 238: 133-140.
von den Driesch, A (1976). A guide to the measurement of animal bones from Archaeological sites. 1st Edn., Cambridge, Massachusetts, Harvard University. PP: 84-87.
Wang, HH; Wang, YXJ; Sheng, H; Zhang, G; Qin, L; Ahuja, AT and Teng, LS (2009). Fossa trochanterica of the proximal femur in rabbits: an anatomic structure for potential misinterpretation on magnetic resonance images. Acta Radiol., 50: 212-216.
Zotti, A; Banzato, T and Cozzi, B (2009). Cross-sectional anatomy of the rabbit neck and trunk: Comparison of computed tomography and cadaver anatomy. Res. Vet. Sci., 87: 171-176.