تاثیر ال-تریپتوفان بر مصرف غذا، دمای رکتوم و پارامترهای متابولیکی خون جوجه‌های 7 روزه در حالت سیری، گرسنگی و استرس گرمایی حاد

نوع مقاله : مقاله کامل

نویسندگان

چکیده

پیشینه: قرار گرفتن در معرض یک درجه حرارت بالای محیط (HT)، می‌تواند باعث ایجاد استرس حرارتی بشود که اثرات منفی بر عملکردهای فیزیولوژیک دارد. ال-تریپتوفان (L-Trp) به عنوان پیش‌ساز مسیرهای سروتونرژیک و کینورنین (Kyn)، دارای اثرات آرام بخشی طی وضعیت‌های مختلف استرس می‌باشد. هدف: این مطالعه جهت تعیین اثر تجویز درون صفاقی Trp بر میزان اخذ غذا، درجه حرارت رکتوم و برخی پارامترهای خونی در شرایط استرس حرارتی انجام شد. روش کار: ال-تریپتوفان (25 و50 میلی‌گرم به ازاﺀ هر کیلوگرم وزن بدن، BW) در جوجه‌های هفت روزه طی HT )39 درجه سانتیگراد) و دمای کنترل CT)؛ 31 درجه سانتیگراد) برای مدت 5 ساعت، در حالت سیری یا گرسنگی به صورت درون صفاقی تجویز شد. نتایج: ال-تریپتوفان سبب افزایش میزان اخذ غذای کاسته شده و کاهش معنی‌دار درجه حرارت رکتوم با مقدار 50 میلی‌گرم به ازاﺀ هر کیلوگرم BW در طی استرس حاد حرارتی گردید. درجه حرارت رکتوم در حالت گرسنگی با مقدار 50 میلی گرم بر کیلوگرم BW و در حالت سیری با مقدار 25 میلی گرم به ازاء هر کیلوگرم BW Trp در حالت سیری در مقایسه با گروه‌های دیگر آزمایش کاهش یافت. کاهش میزان سرمی گلوکز، تری گلیسرید، و کورتیکوسترون در حالت سیری مشاهده شد. ال-تریپتوفان سبب کاهش معنی‌دار سطح کورتیکوسترون سرم در حالت گرسنگی در مقایسه با حالت سیری شد، ‌و نیز در مقدار 25 میلی‌گرم به ازاﺀ هر کیلوگرم BW سبب کاهش معنی‌دار کوتیکوسترون افزایش یافته سرمی در استرس گرمایی گردید. نتیجه‌گیری: استفاده از ال-تریپتوفان سبب افزایش میزان اخذ غذای تجمعی و کاهش درجه حرارت رکتوم در هنگام استرس حرارتی می‌شود. همچنین L-Trp موجب کاهش میزان افزایش یافته کورتیکوسترون سرمی تحت استرس حرارتی و گرسنگی می‌شود. این یافته‌ها نشان دهنده نقش تنظیم کنندگی قوی Trp برای ایجاد تعادل در پاسخ‌های استرس حرارتی در جوجه‌ها می‌باشد.

کلیدواژه‌ها

موضوعات


Ahmed, AA; Ma, W; Ni, Y; Wang, S and Zhao, R (2014a). Corticosterone in ovo modifies aggressive behaviors and reproductive performances through alterations of the hypothalamic-pituitary-gonadal axis in the chicken. Anim. Reprod. Sci., 146: 193-201.
Ahmed, AA; Ma, W; Ni, Y; Zhou, Q and Zhao, R (2014b). Embryonic exposure to corticosterone modifies aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system in the chicken. Horm. Behav., 65: 97-105.
Ashraf, S; Zaneb, H; Yousaf, M; Ijaz, A; Sohail, M; Muti, S; Usman, M; Ijaz, S and Rehman, H (2013). Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J. Anim. Physiol. Anim. Nutr., 97: 68-73.
Bahry, MA; Chowdhury, VS; Yang, H; Tran, PV; Do, PH; Han, G; Ikeda, H; Cockrem, JF and Furuse, M (2017). Central administration of neuropeptide Y differentially regulates monoamines and corticosterone in heat-exposed fed and fasted chicks. Neuropeptides. 62: 93-100.
Bandeira, LG; Bortolot, BS; Cecatto, MJ; Monte-Alto-Costa, A and Romana-Souza, B (2015). Exogenous tryptophan promotes cutaneous wound healing of chronically stressed mice through inhibition of TNF-α and IDO activation. PLoS One. 10: e0128439.
Bitzer-Quintero, OK; Dávalos-Marín, AJ; Ortiz, GG; del Angel Meza, AR; Torres-Mendoza, BM; Robles, RG; Huerta, VC and Beas-Zárate, C (2010). Antioxidant activity of tryptophan in rats under experimental endotoxic shock. Biomed. Pharmacother., 64: 77-81.
Buyse, J; Geypens, B; Malheiros, RD; Moraes, VM; Swennen, Q and Decuypere, E (2004). Assessment of age-related glucose oxidation rates of broiler chickens by using stable isotopes. Life Sci., 75: 2245-2255.
Chi, TC; Ho, YJ; Chen, WP; Chi, TL; Lee, SS; Cheng, JT and Su, MJ (2007). Serotonin enhances beta-endorphin secretion to lower plasma glucose in streptozotocin-induced diabetic rats. Life Sci., 80: 1832-1838.
Chowdhury, VS; Han, G; Bahry, MA; Tran, PV; Do, PH; Yang, H and Furuse, M (2017). L-Citrulline acts as potential hypothermic agent to afford thermotolerance in chicks. J. Therm. Biol., 69: 163-170.
Chowdhury, VS; Tomonaga, S; Ikegami, T; Erwan, E; Ito, K; Cockrem, JF and Furuse, M (2014). Oxidative damage and brain concentrations of free amino acid in chicks exposed to high ambient temperature. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 169: 70-76.
Chowdhury, VS; Tomonaga, S; Nishimura, S; Tabata, S; Cockrem, JF; Tsutsui, K and Furuse, M (2012). Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 162: 227-233.
Denbow, DM; Van Krey, H and Cherry, J (1982). Feeding and drinking response of young chicks to injections of serotonin into the lateral ventricle of the brain. Poult. Sci., 61: 150-155.
El-Merahbi, R; Loffler, M; Mayer, A and Sumara, G (2015). The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett., 589: 1728-1734.
Erwan, E; Chowdhury, VS; Nagasawa, M; Goda, R; Otsuka, T; Yasuo, S and Furuse, M (2014). Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks. Life Sci., 109: 65-71.
Govaerts, T; Room, G; Buyse, J; Lippens, M; De Groote, G and Decuypere, E (2000). Early and temporary quantitative food restriction of broiler chickens. 2. Effects on allometric growth and growth hormone secretion. Br. Poult. Sci., 41: 355-362.
Han, G; Yang, H; Bungo, T; Ikeda, H; Wang, Y; Nguyen, LT; Eltahan, HM; Furuse, M and Chowdhury, VS (2018). In ovo L-leucine administration stimulates lipid metabolisms in heat-exposed male, but not female, chicks to afford thermotolerance. J. Therm. Biol., 71: 74-82.
Ito, K; Bahry, MA; Hui, Y; Furuse, M and Chowdhury, VS (2015). Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 187: 13-19.
Ito, K; Erwan, E; Nagasawa, M; Furuse, M and Chowdhury, VS (2014). Changes in free amino acid concentrations in the blood, brain and muscle of heat-exposed chicks. Br. Poult. Sci., 55: 644-652.
Kaps, M and Lamberson, WR (2017). Biostatistics for animal science. Cabi. PP: 365-383.
Khattak, F and Helmbrecht, A (2018). Effect of different levels of tryptophan on productive performance, egg quality, blood biochemistry, and caecal microbiota of hens housed in enriched colony cages under commercial stocking density. Poult. Sci., 98: 2094-2104.
Kujundžić, RN and Lowenthal, JW (2008). The role of tryptophan metabolism in iNOS transcription and nitric oxide production by chicken macrophage cells upon treatment with interferon gamma. Immunol. Lett., 115: 153-159.
Lacy, M; Van Krey, H; Skewes, P and Denbow, M (1986). Tryptophan’s influence on feeding and body temperature in the fowl. Poult. Sci., 65: 1193-1196.
Lin, H; Decuypere, E and Buyse, J (2004). Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus) 2. Short-term effect. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 139: 745-751.
Lin, H; Decuypere, E and Buyse, J (2006). Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 144: 11-17.
Liu, Y; Yuan, J; Zhang, L; Zhang, Y; Cai, S; Yu, J and Xia, Z (2015). Effects of tryptophan supplementation on growth performance, antioxidative activity, and meat quality of ducks under high stocking density. Poult. Sci., 94: 1894-1901.
Mardones, O; Devia, E; Labbé, B; Oyarzún, R; Vargas-Chacoff, L and Muñoz, J (2018). Effect of L-tryptophan and melatonin supplementation on the serotonin gastrointestinal content and digestive enzymatic activity for Salmo salar and Oncorhynchus kisutch. Aquaculture. 482: 203-210.
Mellor, AL and Munn, DH (1999). Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today. 20: 469-473.
Moon, RJ and Berry, LJ (1968). Effect of tryptophan and selected analogues on body temperature of endotoxin-poisoned mice. J. Bacteriol., 95: 764-770.
Moraes, V; Malheiros, R; Bruggeman, V; Collin, A; Tona, K; Van As, P; Onagbesan, O; Buyse, J; Decuypere, E and Macari, M (2004). The effect of timing of thermal conditioning during incubation on embryo physiological parameters and its relationship to thermotolerance in adult broiler chickens. J. Therm. Biol., 29: 55-61.
Nakagawa, H; Matsumura, T; Suzuki, K; Ninomiya, C and Ishiwata, T (2016). Changes of brain monoamine levels and physiological indexes during heat acclimation in rats. J. Therm. Biol., 58: 15-22.
Nonogaki, K; Kaji, T and Murakami, M (2018). A tryptophan hydroxylase inhibitor decreases hepatic FGF21 expression and circulating FGF21 in mice fed a high-fat diet. Neuropsychiatry. 8: 372-377.
Oshima, S; Shiiya, S and Nakamura, Y (2019). Combined supplementation with glycine and tryptophan reduces purine-induced serum uric acid elevation by accelerating urinary uric acid excretion: A randomized, single-blind, placebo-controlled, crossover study. Nutrients. 11: 2562-2569.
Pan, L; Zhao, P; Ma, X; Shang, Q; Long, S; Wu, Y; Wang, W and Piao, X (2018). Forsythia suspensa extract protects broilers against breast muscle oxidative injury induced by corticosterone mimicked pre-slaughter acute stress. Poult. Sci., 97: 2095-2105.
Paredes, SD; Terron, M; Cubero, J; Valero, V; Barriga, C; Reiter, RJ and Rodriguez, AB (2007). Tryptophan increases nocturnal rest and affects melatonin and serotonin serum levels in old ringdove. Physiol. Behav., 90: 576-582.
Piestun, Y; Shinder, D; Ruzal, M; Halevy, O and Yahav, S (2008). The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation. J. Therm. Biol., 33: 413-418.
Sahin, K; Sahin, N and Kucuk, O (2003). Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32 C). Nutr. Res., 23: 225-238.
Shan, A; Sterling, K; Pesti, G; Bakalli, R; Driver, J and Tejedor, A (2003). The influence of temperature on the threonine and tryptophan requirements of young broiler chicks. Poult. Sci., 82: 1154-1162.
Shea, MM; Douglass, LW and Mench, JA (1991). The interaction of dominance status and supplemental tryptophan on aggression in Gallus domesticus males. Pharmacol. Biochem. Behav., 38: 587-591.
Song, Z; Liu, L; Sheikhahmadi, A; Jiao, H and Lin, H (2012a). Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens. J. Biomed. Biotechnol., 48: 48-69.
Song, Z; Liu, L; Yue, Y; Jiao, H; Lin, H; Sheikhahmadi, A; Everaert, N; Decuypere, E and Buyse, J (2012b). Fasting
alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus). Gen. Comp. Endocrinol., 178: 546-555.
Sun, X; Zhang, H; Sheikhahmadi, A; Wang, Y; Jiao, H; Lin, H and Song, Z (2015). Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int. J. Biometeorol., 59: 127-135.
Tanke, MA; Alserda, E; Doornbos, B; van der Most, PJ; Goeman, K; Postema, F and Korf, J (2008). Low tryptophan diet increases stress-sensitivity, but does not affect habituation in rats. Neurochem. Int., 52: 272-281.
Tran, PV; Chowdhury, VS; Do, PH; Bahry, MA; Yang, H and Furuse, M (2016). L-Ornithine is a potential acute satiety signal in the brain of neonatal chicks. Physiol. Behav., 155: 141-148.
Wang, S; Ni, Y; Guo, F; Sun, Z; Ahmed, A and Zhao, R (2014). Differential expression of hypothalamic fear- and stress-related genes in broiler chickens showing short or long tonic immobility. Domest. Anim. Endocrinol., 47: 65-72.
Watanabe, H; Akasaka, D; Ogasawara, H; Sato, K; Miyake, M; Saito, K; Takahashi, Y; Kanaya, T; Takakura, I and Hondo, T (2010). Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology. 151: 4776-4786.
Yoshida, J; Erwan, E; Chowdhury, VS; Ogino, Y; Shigemura, A; Denbow, DM and Furuse, M (2015). Comparison of centrally injected tryptophan-related substances inducing sedation in acute isolation stress-induced neonatal chicks. Pharmacol. Biochem. Behav., 129: 1-6.
Yoshida, J; Shigemura, A; Ogino, Y; Denbow, DM and Furuse, M (2013). Two receptors are involved in the central functions of kynurenic acid under an acute stress in neonatal chicks. Neuroscience. 248: 194-200.
Zhao, J; Jiao, H; Song, Z and Lin, H (2009). Effects of L-arginine supplementation on glucose and nitric oxide (NO) levels and activity of NO synthase in corticosterone-challenged broiler chickens (Gallus gallus). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 150: 474-480.