پروفایل اسیدهای چرب شیر میش آلوده شده با گونه‌های استافیلوکوکوس

نوع مقاله : مقاله کوتاه

نویسندگان

چکیده

پیشینه: ورم پستان ناشی از گونه‌های استافیلوکوکوس در گوسفندان یک نگرانی جدی برای دامداری‌های شیری است. هدف: هدف از انجام این مطالعه ارزیابی تاثیر عفونت داخل پستانی (IMI) ناشی از گونه‌های استافیلوکوکوس بر پروفایل اسید چرب بلند زنجیره و ترکیبات شیر میش بود. روش کار: این آزمایش در یک گله از گوسفندان زوسلاچتنا والاسکا انجام شد. نمونه شیر از دو سر پستانک 20 راس گوسفند با وزن یکسان در پیک اول یا دوم شیردهی جمع آوری شد. ترکیبات فیزیکوشیمیایی اصلی شیر، تعداد سلول‌های سوماتیک (SCC)، عفونت با گونه‌های استافیلوکوکوس و آلودگی تام باکتریایی (TBC) مشخص شد. پروفایل اسید چرب چربی شیر با استفاده کروماتوگرافی گازی تعیین شد. نتایج: تعداد سلول‌های سوماتیک در شیرهای آلوده با گونه‌های استافیلوکوکوس 25/3 برابر بیشتر از (P<0.01) نمونه شیرهای آلوده نشده بود. مقدار اسید لوریک (С12:0) در چربی شیر میش‌های آلوده بیشتر بود (P<0.05). افزایش معنی‌داری (P<0.05) در سهم اسید لینولئیک (C18:2n6t)، اسید آراشیدونیک (C20:4n6) و کاهش معنی‌داری (P<0.01) در سهم اسید واکسنیک (C18:1n7t) در شیر جمع آوری شده از شیر میش‌های آلوده شده با گونه‌های استافیلوکوکوس مشاهده شد. عفونت با گونه‌های استافیلوکوکوس سبب افزایش نسبت n-6 به n-3 اسید چرب غیر اشباع شد. نتیجه‌گیری: تغییرات در پروفایل اسید چرب شیر ناشی از عفونت با گونه‌های استافیلوکوکوس، سبب کاهش ارزش غذایی شیر میش که به عنوان یک محصول ارتقا دهنده سلامت مطرح است، می‌شود.

کلیدواژه‌ها

موضوعات


Abbondio, M; Fois, I; Longheu, C; Azara, E and Tola, S (2019). Biofilm production, quorum sensing system and analysis of virulence factors of Staphylococcus epidermidis collected from sheep milk samples. Small Rumin Res., 174: 83-87.
Chang, L; Yang, Z; Wu, H; Chen, Y; Shi, X; Mao, Y; Cen, N; Liang, X and Yin, Z (2011). Comparative study on fatty acid composition between normal milk and subclinical mastitis milk of dairy cow. Acta Vet. Zoo. Sinica. 42: 44-47.
Cividini, A and Simčič, M (2015). Poljoprivreda fatty acid profile in milk of Bovec sheep fed in the stable or grazed in different pastures. Agriculture. 21: 109-112.
Dore, S; Liciardi, M; Amatiste, S; Bergagna, S; Bolzoni, G; Caligiuri, V; Cerrone, A; Farina, G; Montagna, CO; Saletti, MA; Scatassa, ML; Sotgiu, G and Cannas, EA (2016). Survey on small ruminant bacterial mastitis in Italy, 2013-2014. Small Rumin Res., 141: 91-93.
Endo, Y; Kamisada, S; Fujimoto, K and Saito, T (2006). Trans fatty acids promote the growth of some Lactobacillus strains. J. Gen. Appl. Microbiol., 52: 29-35.
Fragkou, IA; Boscos, CM and Fthenakis, GC (2014). Diagnosis of clinical or subclinical mastitis in ewes. Small Rumin. Res., 118: 86-92.
Fragkou, IA; Skoufos, J; Cripps, PJ; Kyriazakis, I; Papaioannou, N; Boscos, CM; Tzora, A and Fthenakis, GC (2007). Differences in susceptibility to Mannheimia haemolytica-associated mastitis between two breeds of dairy sheep. J. Dairy Res., 74: 349-355.
Fujita, Y; Matsuoka, H and Hirooka, K (2007). Regulation of fatty acid metabolism in bacteria. Mol. Microbiol., 66: 829-839.
Guetouache, M; Guessas, B and Medjekal, S (2014). Composition and nutritional value of raw milk (Review). Issues Biol. Sci. Pharm. Res., 2: 115-122.
Itoh, T; Fujimoto, Y; Kawai, Y; Toba, T andSaito, T (1995). Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett. Appl. Microbiol., 21: 137-141.
Kelsey, JA; Bayles, KW; Shafii, B and McGuire, MA (2006). Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids. 41: 951-961.
LeMarechal, C; Thiéry, R; Vautor, E and Le Loir, Y (2011). Mastitis impact on technological properties of milk and quality of milk products - A review. Dairy Sci. Technol., 91: 247-282.
Lu, T; Park, JY; Parnell, K; Fox, LA and McGuire, MA (2012). Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria. BMC Res. Notes. 5: 323-334.
Markiewicz-Keszyńska, M; Czyżak-Runowska, G; Lipińska, P and Wójtowski, J (2013). Fatty acid profile of milk-Review. Bull. Vet. Inst. Pulawy. 57: 135-139.
Mensink, RP; Temme, EHM and Hornstra, G (2009). Dietary saturated and transfatty acids and lipoprotein metabolism. Ann. Med., 6: 461-464.
Merz, A; Stephan, R and Johler, S (2016). Staphylococcus aureus isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front. Microbiol., 7: 319-325.
Moossavi, S; Atakora, F; Miliku, K; Sepehri, S; Robertson, B; Duan, Q; Becker, AB; Mandhane, PJ; Turvey, SE; Moraes, TJ; Lefebvre, DL; Sears, MR; Subbarao, P; Field, CJ; Bode, L; Khafipour, E and Azad, MB (2019). Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the child cohort. Front. Nutr., 6: 58-73.
Mortensen, JE; Shryock, TR and Kapral, FA (1992). Modification of bacterial fatty acids by an enzyme Staphylococcus aureus. J. Med. Microbiol., 36: 293-298.
Nazari, R; Godarzi, H; Rahimi Baghi, F and Moeinrad, M (2014). Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk. Iran. J. Vet. Res., 15: 409-412.
Nudda, A; Battacone, G; Boaventura Neto, O; Cannas, A; Francesconi, AHD; Atzori, AS and Pulina, P (2014). Feeding strategies to design the fatty acid profile of sheep milk and cheese. R. Bras. Zootec., 43: 445-456.
Park, YW; Juárez, M; Ramos, M and Haenlein, GFW (2007). Physico-chemical characteristics of goat and sheep milk. Small Rumin Res., 68: 88-113.
Patterson, E; Wall, R;Fitzgerald, GF; Ross, RP and Stanton, C (2012). Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab., 2012: 539426-539441.
Pecka-Kiełb, E; Vasil, M; Zachwieja, A; Zawadzki, W;
Elečko, J; Zigo, F; Illek, JandFarkašova, Z (2016). An effect of mammary gland infection caused by Streptococcus uberis on compositionand physicochemical changes of cows’ milk. Polish J. Vet. Sci., 19: 49-55.
Ptáček, M;Milerski, M;Ducháček, J;Schmidová, J;Tančin, V;Uhrinčat, M;Stádník, L andMichlová, T (2019). Analysis of fatty acid profile in milk fat of Wallachian sheep during lactation. J. Dairy Res., 86: 233-237.
Raynal-Ljutovac, K; Pirisi, A; de Crémoux, R and Gonzalo, C (2007). Somatic cells of goat and sheep milk: Analytical, sanitary, productive and technological aspects. Small Rumin Res., 68: 126-144.
Takano, PV; Scapini, VADC; Valentini, T; Girardini, LK; de Souza, FN; Della Libera, AMMP; Heinemann, MB; Chande, CG; Cortez, A; Collet, SG; Diniz, SA and Blagitz, MG (2018). Milk cellularity and intramammary infections in primiparous and multiparous Lacaune ewes during early lactation. Small Rum. Res., 167: 117-122.
Vasil, M; Pecka-Kiełb of, E; Elečko, J; Zachwieja, A; Zawadzki, W; Zigo, F; Illek, J and Farkašova, Z (2016). Effects of udder infections with Staphylococcus xylosus and Staphylococcus warneri on the composition and physicochemical changes in cow’s milk. Polish J. Vet. Sci., 19: 841-848.
Vasileiou, NGC; Chatzopoulos, DC; Gougoulis, DA; Sarrou, S; Katsafadou, AI; Spyrou, V; Mavrogianni, VS; Petinaki, E and Fthenakis, GC (2018). Slime-producing staphylococci as causal agents of subclinical mastitis in sheep. Vet. Micr., 224: 93-99.