Abdollahzadeh, SM; Zahedani, MR; Rahmdel, S; Hemmati, F and Mazloomi, SM (2018). Development of Lactobacillus acidophilus-fermented milk fortified with date extract. LWT-Food Sci. Technol., 98: 577-582.
Ahmed, IA; Ahmed, AWK and Robinson, RK (1995). Chemical composition of date varieties as influenced by the stage of ripening. Food Chem., 54: 305-309.
Al-Farsi, M; Alasalvar, C; Morris, A; Baron, M and Shahidi, F (2005). Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem., 53: 7592-7599.
Al-Farsi, MA and Lee, CY (2008). Nutritional and functional properties of dates: a review. Crit. Rev. Food Sci. Nutr., 48: 877-887.
Al-humaid, AI; Mousa, HM; El-mergawi, RA and Abdel-Salam, AM (2010). Chemical composition and antioxidant of dates and dates-camel milk mixtures as a protective meal against lipid peroxidation in rats. Am. J. Food Technol., 5: 22-30.
Al-Turki, S; Shahba, MA and Stushnoff, C (2010). Diversity of antioxidant properties and phenolic content of date (Phoenix dactylifera L.) fruits as affected by cultivar and location. JFAE. 8: 253-260.
AOAC (2000). Official methods of analysis. 16th Edn., Methods No. 942.05, Washington, D.C., USA, Gaithersburg, Md.
Biglary, F; Alkarkhi, AFM and Easa, AM (2008). Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem., 107: 1636-1641.
Bogdanov, S; Martin, P and Lullmann, C (1997). Harmonized methods of the European Honey Commission. Apidologie. Extra Issue: 1-59.
Brewer, MS (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. F., 10: 221-247.
Dervisoglu, M and Yazici, F (2006). The effect of citrus fibre on the physical, chemical and sensory properties of ice cream. Food Sci. Technol. Int., 12: 59-164. http://dx.doi.org/10.1177/1082013206064005.
Erkaya, T; Dağdemir, E and Şengül, M (2012). Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res. Int., 45: 331-335.
FAO (Food and Agricultural Organization of the United Nations) (2014). Statistics, agriculture data [Internet]. Available from: http://www.fao.org/faostat/en/#data.
Ferreira, ICFR; Baptista, M; Vilas-Boas, L and Barros, L (2007). Free radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chem., 100: 1511-1516.
Gohari Ardebili, A; Habibi Najafi, MB and Haddad Khodaparast, MH (2005). Effect of date syrup as a substitute for sugar on the physicochemical and sensory properties of soft ice-cream.
Iran. Food Sci. Tech. Res. J., 1: 23-31.
Habib, HM and Ibrahim, WH (2009). Nutritional quality evaluation of eighteen date pit varieties. Int. J. Food Sci. Nutr., 60: 99-111.
Hajian, S and Hamidi Esfahani, Z (2015). Date palm status and perspective in Iran. In: Al-Khayri, JM; Jain, SM and Johnson, DV (Eds.), Date palm genetic resources and utilization. (Illustrated Edn.), Vol. 2: Asia and Europe, CRC Press. P: 16.
Hulme, AC (1970). The biochemistry of fruits and their products. (1st Edn.), Vol. 1, London and New York, Academic Press. P: 2.
Hwang, JY; Shyu, YS and Hsu, CK (2009). Grape wine less improves the theological adds antioxidant properties to ice-cream. LWT-Food Sci. Technol., 42: 312-318.
Kaur, C and Kapoor, HC (2001). Antioxidants a fruits and vegetables-the millenniums health. Int. Food Sci. Technol., 36: 703-725.
Mansouri, A; Embarek, G; Kokkalou, E and Kefalas, P (2005). Phenolic profile and antioxidant activity of the Algerian ripe date fruit (Phoenix dactylifera). Food Chem., 89: 411-420.
Matsumoto, H; Nakamura, Y; Hirayama, M; Yoshiki, Y and Okubo, K (2002). Antioxidant activity of black currant anthocyanin aglycons and their glycosides measured by chemiluminescence in a neutral pH region and in human plasma. J. Agric. Food Chem., 50: 5034-5037.
Milani, E and Koocheki, A (2011). The effects of date syrup and guar gum on physical, rheological and sensory properties of low-fat frozen yoghurt dessert. Int. J. Dairy Technol., 64: 121-129.
Osawa, T (1994). Novel natural antioxidants for utilization in food and biological systems. In: Uritani, I; Garcia, VV and Mendoza, EM (Eds.), Postharvest biochemistry of plant food-materials in the tropics. (1st Edn.), Tokyo, Japan, Scientific Societies Press. PP: 241-251.
Ozdemir, C; Dagdemir, E; Ozdemir, S and Sagdic, O (2008). The effect of using alternative sweeteners to sucrose on ice cream quality. J. Food Qual., 31: 415-428.
Özer, BH; Robinson, RK; Grandison, AS and Bell, AE (1997). Comparison of techniques for measuring the rheological properties of labneh (concentrated yogurt). Int. J. Dairy Technol., 50: 129-133.
Sahari, MA; Barzegar, M and Radfar, R (2007). Effect of varieties on the composition of dates (Phoenix dactylifera L.). J. Food Sci. Technol., 13: 269-275.
Shahidi, F and Naczk, M (2003). Phenolics in food and nutraceuticals. 2nd Edn., Boca Raton, FL, CRC Press. P: 253.
Singh, V; Guizani, N; Essa, MM; Hakkim, FL and Rahman, MS (2012). Comparative analysis of total phenolics, flavonoid content and antioxidant profile of different date varieties (Phoenix dactylifera L.) from Sultanate of Oman. Int. Food Res. J., 19: 1063-1070.
Singh, RP; Murthy, KNC and Jayaprakasha, GK (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem., 50: 81-86.
Yangilar, F (2015). Mineral contents and physical, chemical, sensory properties of ice cream enriched with date fiber. Ital. J. Food Sci., 27: 397-406.