اثرات داربست کیتوزانی در کنار ژل رویال یا زهر زنبور عسل، در بازسازی نقیصه استخوانی بحرانی در استخوان رادیوس موش صحرایی

نوع مقاله : مقاله کامل

نویسندگان

چکیده

هدف از انجام این مطالعه مقایسه اثربخشی زهر زنبور عسل (BV) و ژل رویال (RJ) در کنار داربست کیتوزانی (CS) بر روی بهبود نقیصه استخوانرادیوس در موش صحرایی بوده است. در مجموع 60 نقیصه استخوانی با طول 5 میلی‌متر در استخوان رادیوس 60 عدد موش صحرایی نر نژاد ویستار ایجاد شد. شش استخوان رادیوس سالم نیز از 3 موش صحرایی سالم برداشته شد که به عنوان گروه نرمال در مطالعات بیومکانیک استفاده شدند. نقیصه‌های استخوانی در گروه درمان نشده خالی گذاشته شدند و در گروه شاهد یا اتوگرافت با اتوگرافت، در گروه کیتوزان (CS) با کیتوزان، در گروه کیتوزان-زهر زنبور (CS-BV) با کیتوزان و محلول BV، و در گروه کیتوزان-ژل رویال (CS-RJ) با کیتوزان در کنار ژل رویال پر شدند. التیام نقایص استخوانی در روزهای صفر، 28، 42 و 56 بعد از جراحی از نظر بالینی و رادیولوژی ارزیابی شد. مطالعات بیومکانیک و هیستوپاتولوژی در روز 56 پس از عمل انجام شد. ارزیابی محل التیام در گروه اتوگرافت نسبت به گروه درمان نشده و گروه CS در روزهای 28، 42 و 56 بعد از عمل اپسیته رادیولوژی بیشتری داشت (P<0.05). گروه‌های CS-BV و CS-RJ به شکل قابل توجهی نتایج رادیولوژیک بهتری از گروه‌های درمان نشده و CS در روز 56 پس از جراحی داشتند (P<0.05). تراکم بافت استخوانی (DOT) و نیز تعداد اوستئوسیت‌ها و استئوبلاست‌ها در گروه‌های CS-RJ و CS-BV به نحو معنی‌داری بیش از گروه اتوگرافت و CS بود (P<0.05). نتایج بیومکانیک گروه CS-RJ، به طور معنی‌داری نسبت به گروه اتوگرافت بهتر بود در حالی که ویژگی‌های بیومکانیک گروه CS-BV از نظر آماری با گروه اتوگرافت تفاوت معنی‌داری نداشت ‍(P>0.05). داربست‌ها در گروه CS پس از 56 روز همچنان در محلجراحی قابل مشاهده بودند. بین گروه‌های CS-RJ و CS-BV تفاوت آماری معنی‌داری در نتایج رادیولوژیک، DOT، بافت غضروفی و بافت فیبروزی و نیز عملکرد بیومکانیک در روزهای 42 و 56 بعد از عمل وجود نداشت. گروه‌های CS و درمان نشده ضعیف‌ترین نتایج بیومکانیک را در بین همه گروه‌ها نشان دادند. در مجموع می‌توان چنین نتیجه گرفت که هر دو راهبرد درمانی در گروه‌های CS-BV و CS-RJ در درمان نقایص استخوانی بزرگ و بحرانی‏‏، مناسب و سودمند هستند.

کلیدواژه‌ها


Alidadi, S; Oryan, A; Bigham-Sadegh, A and Moshiri, A (2017). Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydr. Polym., 166: 236-248.
Al Subaie, A; Emami, E; Tamimi, I; Laurenti, M; Eimar, H; Abdallah, MN and Tamimi, F (2016). Systemic administration of omeprazole interferes with bone healing and implant osseointegration: an in vivo study on rat tibiae. J. Clin. Periodontol., 43: 193-203.
Amin, MA and Abdel-Raheem, IT (2014). Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol-chitosan hydrogel containing honey bee venom in diabetic rats. Arch. Pharm. Res., 37: 1016-1031.
Amin, M; Abdel-Raheem, I and Madkor, H (2008). Wound healing and anti-inflammatory activities of bee venom-chitosan blend films. J. Drug Deliv. Sci. Technol., 18: 424-430.
Badr, G; Hozzein, WN; Badr, BM; Al Ghamdi, A; Saad Eldien, HM and Garraud, O (2016). Bee venom accelerates wound healing in diabetic mice by suppressing activating transcription factor-3 (ATF-3) and inducible nitric oxide synthase (iNOS)-mediated oxidative stress and recruiting bone marrow-derived endothelial progenitor cells. J. Cell Physiol., 231: 2159-2171.
Bigham-Sadegh, A and Oryan, A (2015). Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect. Tissue Res., 56: 175-194.
Bogdanov, S (2017). Royal jelly, bee brood: composition, health, medicine: a review. Lipids. 3: 8-19.
Buck, B and Murtha, YM (2017). The management of bone defects in periarticular knee injuries: a review article. J. Knee Surg., 30: 194-199.
Campos, E; Coimbra, P and Gil, M (2013). An improved method for preparing glutaraldehyde cross-linked chitosan–poly (vinyl alcohol) microparticles. Polym. Bull (Berl)., 70: 549-561.
Chen, D; Xin, XX; Qian, HC; Yu, ZY and Shen, LR (2016). Evaluation of the major royal jelly proteins as an alternative to fetal bovine serum in culturing human cell lines. J. Zhejiang Univ. Sci. B., 17: 476.
Dang, Y; Liu, B; Liu, L; Ye, X; Bi, X; Zhang, Y and Gu, J (2011). The 800-nm diode laser irradiation induces skin collagen synthesis by stimulating TGF-β/Smad signaling pathway. Lasers Med. Sci., 26: 837.
Freudenberg, U; Zieris, A; Chwalek, K; Tsurkan, MV; Maitz, MF; Atallah, P; Levental, KR; Eming, SA and Werner, C (2015). Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. J. Control Release. 220: 79-88.
Hattori, N; Nomoto, H; Fukumitsu, H; Mishima, S and Furukawa, S (2007). Royal jelly and its unique fatty acid, 10-hydroxy-trans-2-decenoic acid, promote neurogenesis by neural stem/progenitor cells in vitro. Biomed. Res., 28: 261-266.
Jaasma, MJ; Jackson, WM; Tang, RY and Keaveny, TM (2007). Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J. Biomech., 40: 1938-1945.
Kaku, M; Rocabado, JMR; Kitami, M; Ida, T and Uoshima, K (2014). Royal jelly affects collagen crosslinking in bone of ovariectomized rats. J. Funct. Foods., 7: 398-406.
Kashima, Y; Kanematsu, S; Asai, S; Kusada, M; Watanabe, S; Kawashima, T; Nakamura, T; Shimada, M; Goto, T and Nagaoka, S (2014). Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly. PloS one., 9: e105073.
Komi, DEA; Shafaghat, F and Zwiener, RD (2017). Immunology of bee venom. Clin. Rev. Allergy Immunol., 54: 386-396.
Koya-Miyata, S; Takei, Y; Ushio, S; Iwaki, K; Ikeda, M and Kurimoto, M (2002). Royal jelly and ascorbic acid 2-O-alpha-glucoside (AA-2G) increase collagen synthesis in normal hamster skin fibroblast cultures. Nat. Med., 56: 191-194.
Lane, JM and Sandhu, H (1987). Current approaches to experimental bone grafting. Orthop. Clin. North Am., 18: 213-225.
Mateescu, C (1999). Enhanced nutritive, functional and therapeutic action of combined bee products in complex food supplements. Rom. Biotechnol. Lett., 4: 163-172.
Münstedt, K; Henschel, M; Hauenschild, A and von Georgi, R (2009). Royal jelly increases high density lipoprotein levels but in older patients only. J. Altern. Complem. Med., 15: 329-330.
Musa, M; Nasir, NFM and Thirumulu, KP (2014). Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging. Afr. J. Tradit. Complement Altern. Med., 11: 148-155.
Narita, Y; Nomura, J; Ohta, S; Inoh, Y; Suzuki, KM; Araki, Y; Okada, S; Matsumoto, I; Isohama, Y and Abe, K (2006). Royal jelly stimulates bone formation: physiologic and nutrigenomic studies with mice and cell lines. Biosci. Biotechnol. Biochem., 70: 2508-2514.
Okamoto, I; Taniguchi, Y; Kunikata, T; Kohno, K; Iwaki, K; Ikeda, M and Kurimoto, M (2003). Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci., 73: 2029-2045.
Oryan, A; Alemzadeh, E and Moshiri, A (2016a). Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J. Tissue Viability., 25: 98-118.
Oryan, A; Alidadi, S; Bigham-Sadegh, A and Moshiri, A (2016b). Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J. Mater. Sci. Mater. Med., 27: 155.
Oryan, A; Alidadi, S; Bigham-Sadegh, A; Moshiri, A and Kamali, A (2017). Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. J. Control Release., 254: 65-74.
Oryan, A; Alidadi, S; Moshiri, A and Maffulli, N (2014a). Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res., 9: 18.
Oryan, A; Moshiri, A and Meimandi-Parizi, A (2014b). Implantation of a novel tissue-engineered graft in a large tendon defect initiated inflammation, accelerated fibroplasia and improved remodeling of the new Achilles tendon: a comprehensive detailed study with new insights. Cell Tissue Res., 355: 59-80.
Oryan, A; Papaioannou, N; Kamali, A and Stylianaki, I (2016c). Mesenchymal stem cells and immunomodulation: implications in bone tissue engineering. Int. Clin. Pathol. J., 2: 60.
Oryan, A and Zaker, S (1998). Effects of topical application of honey on cutaneous wound healing in rabbits. Transbound Emerg. Dis., 45: 181-188.
Özan, F; Çörekçi, B; Toptaş, O; Halicioğlu, K; Irgin, C; Yilmaz, F and Hezenci, Y (2015). Effect of royal jelly on new bone formation in rapid maxillary expansion in rats. Med. Oral Patol. Oral Cir. Bucal., 20: e651.
Pak, SC (2017). Chemical composition of bee venom. In: Alvarez-Suarez, J (Ed.), Bee products - chemical and biological properties. Springer, Cham. doi: 978-3-319-59689-1_13.
Rady, I; Siddiqui, IA; Rady, M and Mukhtar, H (2017). Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett., 402: 16-31.
Ramadan, MF and Al-Ghamdi, A (2012). Bioactive compounds and health-promoting properties of royal jelly: a review. J. Funct. Foods., 4: 39-52.
Rutkowski, JL (2014). Controlled early inflammation and bone healing-potential new treatments. J. Oral Implantol., 40: 229-230.
Sabatini, AG; Marcazzan, GL; Caboni, MF; Bogdanov, S and Almeida-Muradian, L (2009). Quality and standardisation of royal jelly. J. ApiProd. ApiMed. Sci., 1: 1-6.
Satomi, KM; Okamoto, I; Ushio, S; Iwaki, K; Ikeda, M and Kurimoto, M (2004). Identification of a collagen production-promoting factor from an extract of royal jelly and its possible mechanism. Biosci. Biotechnol. Biochem., 68: 767-773.
Schliephake, H; Rublack, J; Förster, A; Schwenzer, B; Reichert, J and Scharnweber, D (2015). Functionali-zation of titanium implants using a modular system for binding and release of VEGF enhances bone-implant contact in a rodent model. J. Clin. Periodontol., 42: 302-310.
Schmidt-Bleek, K; Schell, H; Lienau, J; Schulz, N; Hoff, P; Pfaff, M; Schmidt, G; Martin, C; Perka, C and Buttgereit, F (2014). Initial immune reaction and angiogenesis in bone healing. J. Tissue Eng. Regen. Med., 8: 120-130.
Sforcin, JM; Bankova, V and Kuropatnicki, AK (2017). Medical benefits of honeybee products. Evid. Based. Complement Alternat. Med., doi: 10.1155/2017/2702106.
Siavash, M; Shokri, S; Haghighi, S; Shahtalebi, MA and Farajzadehgan, Z (2015). The efficacy of topical royal jelly on healing of diabetic foot ulcers: a double-blind placebo-controlled clinical trial. Int. Wound J., 12: 137-142.
Tamer, TM; Valachová, K; Mohyeldin, MS and Soltes, L (2016). Free radical scavenger activity of chitosan and its aminated derivative. J. Appl. Pharma. Sci., 6: 195-201.
Tasker, L (2008). Methods for the euthanasia of dogs and cats: comparison and recommendations. World Society for the
Protection of Animals, London.
Tsuruma, Y; Maruyama, H and Araki, Y (2011). Effect of a glycoprotein (apisin) in royal jelly on proliferation and differentiation in skin fibroblast and osteoblastic cells. Nippon Shokuhin Kagaku Kogaku Kaishi., 58: 121-126.
Venkatesan, J and Kim, SK (2010). Chitosan composites for bone tissue engineering—an overview. Mar. Drugs. 8: 2252-2266.
Viuda-Martos, M; Ruiz-Navajas, Y; Fernández-López, J and Pérez-Álvarez, J (2008). Functional properties of honey, propolis, and royal jelly. J. Food Sci., 73: 117-124.
Wu, CS; Wu, PH; Fang, AH and Lan, CC (2012). FK506 inhibits the enhancing effects of transforming growth factor (TGF)-β1 on collagen expression and TGF-β/Smad signalling in keloid fibroblasts: implication for new therapeutic approach. Br. J. Dermatol., 167: 532-541.
Yang, L; Murota, H; Serada, S; Fujimoto, M; Kudo, A; Naka, T and Katayama, I (2014). Histamine contributes to tissue remodeling via periostin expression. J. Invest. Dermatol., 134: 2105-2113.
Zamami, Y; Takatori, S; Goda, M; Koyama, T; Iwatani, Y; Jin, X; Takai-Doi, S and Kawasaki, H (2008). Royal jelly ameliorates insulin resistance in fructose-drinking rats. Biol. Pharm. Bull., 31: 2103-2107.
Zhang, X; Awad, HA; O’Keefe, RJ; Guldberg, RE and Schwarz, EM (2008). A perspective: engineering periosteum for structural bone graft healing. Clin. Orthop. Relat. Res., 466: 1777-1787.
Zhao, D; Shi, Y; Dang, Y; Zhai, Y and Ye, X (2015). Daidzein stimulates collagen synthesis by activating the TGF-β/smad signal pathway. Australas J. Dermatol., 56: e7-14.