Benatar, T; Tkalec, L and Ratcliffe, MJH (1992). Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development. P. Natl. Acad. Sci. USA., 89: 7615-7619.
Brandtzaeg, P; Baekkevold, ES and Morton, HC (2001). From B to A the mucosal way. Nat. Immunol., 2: 1093-1094.
Brosnan, JT and Brosnan, ME (2006). The sulfur-containing amino acids: an overview. J. Nutr., 136: 1636S-1640S.
Clem, AS (2011). Fundamentals of vaccine immunology. J. Glob. Infect. Dis., 3: 73-78.
Elmada, CZ; Huang, W; Jin, M; Liang, X; Mai, K and Zhou, Q (2016). The effect of dietary methionine on growth, antioxidant capacity, innate immune response and disease resistance of juvenile yellow catfish (Pelteobagrus fulvidraco). Aquacult. Nutr., 22: 1163-1173.
Fang, Z; Yao, K; Zhang, X; Zhao, S; Sun, Z; Tian, G; Yu, B; Lin, Y; Zhu, B; Jia, G; Zhang, K; Cheng, D and Wu, D (2010). Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids. 39: 633-640.
Grimble, RF (2006). The effects of sulfur amino acid intake on immune function in humans. J. Nutr., 136: 1660S-1665S.
Guerrero, JM and Reiter, RJ (2002). Melatonin-immune system relationships. Curr. Top. Med. Chem., 2: 167-179.
Hecht, GA (2003). Microbial pathogenesis and the intestinal epithelial cell. 1st Edn., In: ASM American Society for Microbiology, WashingtonD.C., USA. PP: 61-72.
Hirano, T; Yasukawa, K; Harada, H; Taga, T; Watanabe, Y; Matsuda, T; Kashiwamura, SI; Nakajima, K; Koyama, K; Iwamatsu, A; Tsunasawa, S; Sakiyama, F; Matsui, H; Takahara, Y; Taniguchi, T and Kishimoto, T (1986). Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 324: 73-76.
Horvat, S; Mlinaric-Majerski, K; Glavas-Obrovac, L; Jakas, A; Veljkovic, J; Marczi, S; Kragol, G; Roscic, M; Matkovic, M and Milostic-Srb, A (2006). Tumor-cell-targeted methionine-enkephalin analogues containing unnatural amino acids: design, synthesis, and in vitro antitumor activity. J. Med. Chem., 49: 3136-3142.
Hou, YQ; Guo, YM; Zhou, YP; Ji, C and Zhao, JY (2001). Effects of different dietary levels of protein, lysine, methionine and threonine on immune function in early-weaned piglets. Chinese J. Anim. Sci., 37: 18-20.
Kim, WK; Froelich, CA; Patterson, PH and Ricke, SC (2006). The potential to reduce poultry nitrogen emissions with dietary methionine or methionine analogues supplementation. Worlds Poult. Sci. J., 62: 338-353.
Konashi, S; Takahashi, K and Akiba, Y (2000). Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. Brit. J. Nutr., 83: 449-456.
Lammers, A; Wieland, WH; Kruijt, L; Jansma, A; Straetemans, T and Schots, A (2010). Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken.
Dev. Comp. Immunol., 34: 1254-1262.
Li, GW; Burkhardt, D; Gross, C and Weissman, JS (2014). Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell. 157: 624-635.
Li, C; Li, Z; Sletten, E; Arnesano, F; Losacco, M; Natile, G and Liu, Y (2009). Methionine can favor DNA platination by trans-coordinated platinum antitumor drugs. Angew. Chem. Int. Ed. Engl., 48: 8497-8500.
Lindner, C; Wahl, B; Fohse, L; Suerbaum, S; Macpherson, AJ; Prinz, I and Pabst, O (2012). Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine.
J. Exp. Med., 209: 365-377.
Liu, J; Cui, HM; Peng, X; Fang, J; Zuo, ZC; Deng, J; Wang, HS; Wu, BY; Deng, YX and Wang, KP (2013). Decreased IgA+ B cells population and IgA, IgG, IgM contents of the cecal tonsil induced by dietary high fluorine in broilers. Int. J. Env. Res. Pub. Heal., 10: 1775-1785.
Luo, S and Levine, RL (2009). Methionine in proteins defends against oxidative stress. FASED J., 23: 464-472.
Macpherson, AJ; Hunziker, L; Mccoy, K and Lamarre, A (2001). Iga responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes & Infec., 3: 1021-1035.
Mirzaaghatabar, F; Saki, AA; Zamani, P; Aliarabi, H and Hemati Matin, HR (2011). Effect of different levels of diet methionine and metabolisable energy on broiler performance and immune system.
Food Agr. Immunol., 22: 93-103.
Mockett, APA (1986). Monoclonal antibodies used to isolate IgM from chicken bile and avian sera and to detect specific IgM in chicken sera. Avian Pathol., 15: 337-348.
Mowat, AM and Agace, WW (2014). Regional specialization within the intestinal immune system. Nat. Rev. Immunol., 14: 667-685.
NRC (1994). Nutrient requirements of domestic animals. Nutrient requirements of poultry. 9th Edn., Washington, D.C., NationalAcademy of Science.
Oz, HS; Chen, TS and Neuman, M (2008). Methionine deficiency and hepatic injury in a dietary steatohepatitis model.
Digest. Dis. Sci., 53: 767-776.
Perez-Carbajal, C; Caldwell, D; Farnell, M; Stringfellow, K; Pohl, S; Casco, G; Pro-Martinez, A and Ruiz-Feria, CA (2010). Immune response of broiler chickens fed different levels of arginine and vitamin E to a coccidiosis vaccine and Eimeria challenge. Poult. Sci., 89: 1870-1877.
Peterson, LW and Artis, D (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol., 14: 141-153.
Rama Rao, SV; Prahara, JNK; Panda, AK and Reddy, MR (2003). Interaction between genotype and dietary concentrations of methionine for immune function in commercial broilers. Brit. Poul. Sci., 44: 104-112.
Ratcliffe, MJH and Ivanyi, J (1981). Allotype suppression in the chicken. IV. Deletion of B cells and lack of suppressor cells during chronic suppression. Eur. J. Immunol., 11: 306-310.
Reynaud, CA; Imhof, BA; Anquez, V and Weill, JC (1992). Emergence of committed B lymphoid progenitors in the developing chicken embryo. EMBO J., 11: 4349-4358.
Sanchez-Roman, I; Gomez, A; Gomez, J; Suarez, H; Sanchez, C; Naudi, A; Ayala, V; Portero-Otin, M; Lopez-Torres, M; Pamplona, R and Barja, G (2011). Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart.
J. Bioenerg. Biomemb., 43: 699-708.
Schroeder, JrHW and Cavacini, L (2010). Structure and function of immunoglobulins. J. Allergy Clin. Immun., 125: S41-S52.
Schwarz, A; Medrano-Mercado, N; Billingsley, PF; Schaub, GA and Sternberg, JM (2010). Igm-antibody responses of chickens to salivary antigens of triatoma infestans, as early biomarkers for low-level infestation of triatomines. Int. J. Parasitol., 40: 1295-1302.
Shimizu, M; Nagashima, H; Sano, K; Hashimoto, K; Ozeki, M; Tsuda, K and Hatta, H (1992). Molecular stability of chicken and rabbit immunoglobulin G. Biosci. Biotech. Bioch., 56: 270-274.
Stadtman, ER; Moskovitz, J; Berlett, BS and Levine, RL (2002). Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol. Cell. Biochem., 234: 3-9.
Swain, BK and Johri, TS (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. Brit. Poul. Sci., 41: 83-88.
Tang, X; Zhao, Y; Le, G; Shi, Y and Sun, J (2016). Effects of methionine hydroxy analogue on intestinal function and oxidative status in broiler chickens. FASEB J., 30: 232.
Tavares, CD; Sharabi, K; Dominy, JE; Lee, Y; Isasa, M; Orozco, JM; Jedrychowski, MP; Kamenecka, TM; Griffin, PR; Gygi, SP and Puigserver, P (2016). The methionine transamination pathway controls hepatic glucose metabolism through regulation of the GCN5 acetyltransferase and the PGC-1α transcriptional coactivator. J. Biol. Chem., 291: 10635-10645.
Tesseraud, S; Everaert, N; Ezzine, SB; Collin, A and Berri, SMC (2011). Manipulating tissue metabolism by amino acids. Worlds Poult. Sci. J., 67: 243-252.
Waterland, RA (2006). Assessing the effects of high methionine intake on DNA methylation. J. Nutr., 136: 1706S-1710S.
Wu, B; Cui, H; Peng, X; Fang, J; Cui, W and Liu, XD (2013). Pathology of bursae of fabricius in methionine-deficient broiler chickens. Nutrients. 5: 877-886.
Wu, B; Cui, H; Peng, X; Fang, J and Liu, XD (2012). Effect of methionine deficiency on the thymus and the subsets and proliferation of peripheral blood T-cell, and serum IL-2 contents in broilers. J. Integr. Agr., 11: 1009-1019.
Wu, B; Cui, H; Peng, X; Fang, J; Zuo, Z; Deng, J and Huang, J (2013). Dietary nickel chloride restrains the development of small intestine in broilers. Biol. Trace Elem. Res., 155: 236-246.
Yang, LJ; Huo, ZC; Hou, JC; Cheng, P and Sun, SL (2004). The comparison of the effect of the solid methionine and liquid methionine on the chicken biological titer. Chinese J. Anim. Sci., 40: 16-18.
Yen, CL; Mar, MH; Craciunescu, CN; Edwards, LJ and Zeisel, SH (2002). Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells. J. Nutr., 132: 1840-1847.
Zhang, LB and Guo, YM (2008). Effects of liquid DL-methionine hydroxy analogue on growth performance and immune responses in broiler chickens. Acta Veterinaria et Zootechnica Sinica., 39: 1204-1211.
Zhang, YC and Li, FC (2008). Effect of dietary methionine supplement levels on growth performance, immunity performance and blood metabolites of 2-3 month-old rabbits. Southwest China J. Agr. Sci., 21: 472-475.
Zhang, S; Wong, EA and Gilbert, ER (2015). Bioavailability of different dietary supplemental methionine sources in animals. Front. Biosci. (Elite Edn.), 7: 478-490.
Zhong, H; Li, H; Liu, G; Wan, H; Mercier, Y; Zhang, X; Lin, Y; Che, L; Xu, S; Tang, L; Tian, G; Chen, D; Wu, D and Tian, G (2016). Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. J. Anim. Sci. Biotechno., 7: 46-60.